Note on a conjecture of toft


A conjecture of Toft [17] asserts that any 4-critical graph (or equivalently, every 4-chromatic graph) contains a fully odd subdivision ofK 4. We show that if a graphG has a degree three nodev such thatG-v is 3-colourable, then eitherG is 3-colourable or it contains a fully oddK 4. This resolves Toft's conjecture in the special case where a 4-critical graph has a degree three node, which is in turn used to prove the conjecture for line-graphs. The proof is constructive and yields a polynomial algorithm which given a 3-degenerate graph either finds a 3-colouring or exhibits a subgraph that is a fully odd subdivision ofK 4. (A graph is 3-degenerate if every subgraph has some node of degree at most three.)

This is a preview of subscription content, access via your institution.


  1. [1]

    P. A. Catlin: Hajós graph-colouring conjecture: variations and counterexamples,J. Comb. Theory (B) 26, (1979), 268–274.

    Google Scholar 

  2. [2]

    V. Chvátal: On certain polytopes associated with graphs,J. Comb. Theory (B) 18, (1975), 138–154.

    Google Scholar 

  3. [3]

    G. A. Dirac: A property of 4-chromatic graphs and some remarks on critical graphs,J. London Math. Soc. 27, (1952), 85–92.

    Google Scholar 

  4. [4]

    P. Erdös: On some aspects of my work with Gabriel Dirac, inGraph Theory in Memory of G. A. Dirac. Ann. of Discrete Math. 41, North-Holland 1989, 111–116.

  5. [5]

    S. Fiorini, R. J. Wilson:Edge-colourings of graphs, Pitman 1977.

  6. [6]

    T. Gallai: Kritische Graphen I,Publ. Math. Inst. Hungar. Acad. Sci. 8, (1963), 165–192.

    Google Scholar 

  7. [7]

    M. R. Garey, D. S. Johnson, L. Stockmeyer: Some simplifiedNP-complete graph problems,Theor. Comp. Sci. 1, (1976), 237–267.

    Google Scholar 

  8. [8]

    A. M. H. Gerards, L. Lovász, A. Schrijver, Shih, P. D. Seymour, K. Truemper:manuscript.

  9. [9]

    A. M. H. Gerards, A. Schrijver: Matrices with the Edmonds-Johnson property,Combinatorica 6, (1986), 403–417.

    Google Scholar 

  10. [10]

    G. Hajós: Über eine Konstruktion nichtn-färbbarer Graphen,Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10, (1961), 116–117.

    Google Scholar 

  11. [11]

    T. R. Jensen, G. F. Royle: Small graphs of chromatic number 5 — a computer search,J. Graph Theory,19, (1995), 107–116.

    Google Scholar 

  12. [12]

    G. Koester: Note on a problem of T. Gallai and G. A. Dirac,Combinatorica 5, (1985), 227–228.

    Google Scholar 

  13. [13]

    G. Koester: 4-critical 4-valent planar graphs constructed with crowns,Math. Scand. 67, (1990), 15–22.

    Google Scholar 

  14. [14]

    E. C. Sewell, L. E. Trotter, Jr.: Stability critical graphs and even subdivisions ofK 4,submitted to J. Comb. Theory (B).

  15. [15]

    M. Simonovits: On colour-critical graphs,Studia Sci. Math. Hungar. 7, (1972). 67–81.

    Google Scholar 

  16. [16]

    B. Toft: Two theorems on critical 4-chromatic graphs,Studia Sci. Math. Hungar. 7, (1972), 83–89.

    Google Scholar 

  17. [17]

    B. Toft: Problem 11, inRecent Advances in Graph Theory, Academia Praha 1975, 543–544.

  18. [18]

    D. B. West: Open problems,SIAM J. Discrete Math. Newsletter,2(1), (1991), 10–12.

    Google Scholar 

  19. [19]

    D. A. Youngs: Gallai's problem on Dirac's construction,Discrete Math. 101, (1992), 343–350.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jensen, T.R., Shepherd, F.B. Note on a conjecture of toft. Combinatorica 15, 373–377 (1995).

Download citation

Mathematics Subject Classification (1991)

  • 05 C 15
  • 05 C 38
  • 05 C 85