A lattice point problem and additive number theory

Abstract

For every dimensiond≥1 there exists a constantc=c(d) such that for alln≥1, every set of at leastcn lattice points in thed-dimensional Euclidean space contains a subset of cardinality preciselyn whose centroid is also a lattice point. The proof combines techniques from additive number theory with results about the expansion properties of Cayley graphs with given eigenvalues.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. Alon: Subset sums,J. Number Theory 27 (1987), 196–205.

    Google Scholar 

  2. [2]

    N. Alon, andM. Dubiner:Zero-sum sets of prescribed size, in: Combinatorics, Paul Erdös is Eighty, Bolyai Society, Mathematical Studies, Keszthely, Hungary, 1993, 33–50.

    Google Scholar 

  3. [3]

    N. Alon, R. M. Karp, D. Peleg, andD. B. West: A graph-theoretic game and its application to thek-servers problem,SIAM J. Comp., to appear.

  4. [4]

    N. Alon, andV. D. Milman: λ1, isoperimetric inequalities for graphs and superconcentrators,J. Comb. Theory, Ser. B,38 (1985), 73–88.

    Google Scholar 

  5. [5]

    N. Alon, andJ. H. Spencer:The probabilistic method, Wiley, 1991.

  6. [6]

    T. C. Brown andJ. C. Buhler: A density version of a geometric Ramsey theorem,J. Comb. Theory, Ser. A,32 (1982), 20–34.

    Google Scholar 

  7. [7]

    J. L. Brenner: Problem 6298,Amer. Math. Monthly,89 (1982), 279–280.

    Google Scholar 

  8. [8]

    P. Erdős, A. Ginzburg, andA. Ziv: Theorem in the additive number theory,Bull. Research Council Isreal 10F (1961), 41–43.

    Google Scholar 

  9. [9]

    P. Erdős andH. Heilbronn: On the addition of residue classes modp, Acta Arith.,9 (1964), 149–159.

    Google Scholar 

  10. [10]

    P. Frankl, R. L. Graham, andV. Rödl: On subsets of abelian groups with no 3-term arithmetic progression,J. Comb. Theory Ser. A,45 (1987), 157–161.

    Google Scholar 

  11. [11]

    H. Furstenberg, andY. Katznelson: An ergodic Szemerédi theorem for IP-systems and combinatorial theory,J. d'Analyse Math.,45 (1985), 117–168.

    Google Scholar 

  12. [12]

    H. Harborth: Ein Extremalproblem für Gitterpunkte,J. Reine Angew. Math.,262/263 (1973), 356–360.

    Google Scholar 

  13. [13]

    A. Kemnitz: On a lattice point problem,Ars Combinatoria,16b (1983), 151–160.

    Google Scholar 

  14. [14]

    B. Leeb, andC. Stahlke: A problem on lattice points,Crux Mathematicorum 13 (1987), 104–108.

    Google Scholar 

  15. [15]

    L. H. Loomis, andH. Whitney: An inequality related to the isoperimetric inequality,Bulletin AMS,55 (1949), 961–962.

    Google Scholar 

  16. [16]

    L. Lovász:Combinatorial Problems and Exercises, North Holland, Amsterdam, 1979, Problem 11.8.

    Google Scholar 

  17. [17]

    J. E. Olson: An addition theorem modulop, J. Comb. Theory 5 (1968), 45–52.

    Google Scholar 

  18. [18]

    H. Plünnecke: Eine zahlentheoretische Anwendung der Graphentheorie,J. Reine Angew. Math.,243 (1970), 171–183.

    Google Scholar 

  19. [19]

    I. Z. Ruzsa: An application of graph theory to additive number theory,Scientia,3 (1989), 97–109.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alon, N., Dubiner, M. A lattice point problem and additive number theory. Combinatorica 15, 301–309 (1995). https://doi.org/10.1007/BF01299737

Download citation

Mathematics Subject Classification (1991)

  • 11 B 75