Skip to main content
Log in

Adaptive mesh refinement using piecewise-linear shape functions based on the blending function method

  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Use of quadrilateral elements for finite element mesh refinement can lead either to so-called ‘irregular’ meshes or the necessity of adjustments between finer and coarser parts of the mesh necessary. In the case of ‘irregular’ meshes, constraints have to be introduced in order to maintain continuity of the displacements. Introduction of finite elements based on blending function interpolation shape functions using piecewise boundary interpolation avoids these problems. This paper introduces an adaptive refinement procedure for these types of elements. The refinement is anh-method. Error estimation is performed using the Zienkiewicz-Zhu method. The refinement is controlled by a switching function representation. The method is applied to the plane stress problem. Numerical examples are given to show the efficiency of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I.; Zienkiewicz, O.C.; Gago, J.; de A. Oliveira, E.R. (editors) (1986) Accuracy Estimates and Adaptive Refinements in Finite Element Computations, New York, Wiley & Sons

    Google Scholar 

  2. Oden, J.T.; Demkowicz, L. (1989) Advances in adaptive improvements—A survey of adaptive finite element methods in computational mechanics. In State-of-the-Art Surveys on Computational Mechanics, Noor, A.K.; Oden, J.T. (Editors), New York, ASME

    Google Scholar 

  3. Mackerle, J. (1993) Mesh generation and refinement for FEM and BEM—A bibliography (1990–1993), Finite Elements in Analysis and Design 15, 177–188

    Google Scholar 

  4. Mackerle, J. (1994) Error analysis, adaptive techniques and finite and boundary elements—A bibliography (1992–1993), Finite Elements in Analysis and Design, 17, 231–246

    Google Scholar 

  5. Kikuchi, N.; Torigaki, T. (1993) Adaptive finite element methods in computer aided engineering. In Advanced Techniques in the Optimum Design of Structures, Hernández, S. (Editor). Southampton, UK, Computational Mechanics Pubheations

    Google Scholar 

  6. Szabo, B.A.; Babuška, I. (1991) Finite Element Analysis, New York, Wiley & Sons

    Google Scholar 

  7. Kato, K.; Lee, N.-S.; Bathe, K.-J. (1993) Adaptive finite element analysis of large strain elastic response, Computers and Structures 47, 829–855

    Google Scholar 

  8. Lee, N.-S.; Bathe, K.-J. (1994) Error indicators and adaptive remeshing in large deformation finite element analysis, Finite Elements in Analysis and Design, 16, 99–140

    Google Scholar 

  9. Gordon, W.J. (1971) Blending-function methods of bivariate and multivariate interpolation and approximation, SIAM Numer. Anal., 8, 158–177

    Google Scholar 

  10. Gordon, W.J.; Hall, C.A. (1973) Transfinite element methods: blending-function interpolation over arbitrary curved element domains, Numer. Math., 21, 109–129

    Google Scholar 

  11. Birkhoff, G.; Cavendish, J.C.; Gordon, W.J. (1974) Multivariate approximation by locally blended univariate interpolants, Proc. Nat. Acad. Sci. USA, 71, 3423–3425

    Google Scholar 

  12. Cavendish, J.C.; Gordon, W.J.; Hall, C.A. (1976) Ritz-Galerkin approximations in blending function spaces, Number. Math., 26, 155–178

    Google Scholar 

  13. Cavendish, J.C.; Gordon, W.J.; Hall, C.A. (1977) Substructured marco elements based on locally blended interpolation, Int. J. Num. Meth. Engn., 11, 1405–1421

    Google Scholar 

  14. Röhr, U. (1985) Lokale finite Elementnetzverfeinerungen bei Platten und Scheibenaufgaben mittels gemischter Interpolation, Schiffbauforschung, 24, 39–50

    Google Scholar 

  15. Röhr, U. (1986) Elastostatische Strukturanalyse des Schiffs-körpers mittels FE-FS-Kombination, Teil 1: Theoretische Grundlagen, Schiffbauforschung, 25, 220–233

    Google Scholar 

  16. Röhr, U. (1987) Elastostatische Strukturanalyse des Schiffs-körpers mittels FE-FS-Kombination, Teil 2, Schiffbauforschung, 26, 48–53

    Google Scholar 

  17. Röhr, U.; Silge, F.; Phillipp, R. (1987) Zur Torsionsanalyse eines Mehrzweckfrachschiffes mit extrem offenem Deck mittels einer Finiten-Elemente-Kombination, Schiffbauforschung, 26, 173–184

    Google Scholar 

  18. Röhr, U. (1990) Versteifte räumliche Flächenelemente für ein kombiniertes FE-Modell des Schiffskörpers, Schiffbauforschung, 29, 95–111

    Google Scholar 

  19. Reißmann, C.; Röhr, U.; Gabriel, G.; Chmielewski, R.; Schulz, T. (1991) Nonconventional FEM-application in ship structure analysis, Proceedings of the International Symposium on Marine Structures, ISMS '91, Shanghai

  20. Bathe, K. J. (1982) Finite Element Procedures in Engineering Analysis, Englewood Cliffs, NJ, Prentice Hall

    Google Scholar 

  21. Zienkiewicz, O.C.; Zhu, J.Z. (1987) A simple error estimation and adaptive procedure for practical engineering analysis, Int. J. Num. Meth. Engn., 24, 337–357

    Google Scholar 

  22. Ainsworth, M., Zhu, J.Z.; Craig, A.W.; Zienkiewicz, O.C. (1989) Analysis of the Zienkiewicz-Zhua-posteriori error estimator in finite element method, Int. J. Num. Meth. Engn., 28, 2161–2174

    Google Scholar 

  23. Schramm, U. (1992) Adaptive mesh refinement using elements with blended interpolation, Proceedings of the International Conference on Education, Practice and Promotion of Computational Methods in Engineering using Small Computers, EPMESC IV, Dalian, Peoples Republic of China

  24. Shpitalnij, M.; Bar-Yoseph, P.; Kimberg, Y. (1989) Finite element mesh generation via switching function representation, Finite Elements in Analysis and Design, 5 119–130

    Google Scholar 

  25. Möller, P.; Tischer, A. (1993) Einführung effektiver Vernetzungstechniken für Finite-Elemente-Analysen im Schiffbau, FDS-Report Nr. 246/1993, Forschungszentrum des Deutschen Schiffbaus, Hamburg

    Google Scholar 

  26. Timoshenko, S.P. (1934) Theory of Elasticity, New York, McGraw-Hill

    Google Scholar 

  27. Reißmann, C.; Hopp, C.; Fröhling, W. (1977) Berechnung von Kerbspannungen in tordierten Wellen, Maschinenbautechnik, 26, 160–163

    Google Scholar 

  28. Zhu, J.Z.; Zienkiewicz, O.C. (1990) Superconvergence patch recovery anda-posteriori Error Estimates. Part 1: The Recovery Technique, Int. J. Num. Meth. Engn., 30, 1321–1339

    Google Scholar 

  29. Zienkiewicz, O.C.; Zhu, J.Z. (1992) The superconvergence recovery technique anda-posteriori error estimators, Int. J. Num. Meth. Engn., 33, 1331–1364

    Google Scholar 

  30. Strang, G.; Fix, G.J. (1973) An Analysis of the Finite Element Metyod, Englewood Cliffs, NJ, Prentice Hall

    Google Scholar 

  31. Reißmann, C.; Möller, P.; Tischer, A. (1993) Globale Schiffsfestigkeitsanalyse mit adaptiver FE-Netzverfeinerung in lokalen Bereichen, Jahrbuch der Schiffbautechnischen Gesellschaft, 87, 436–444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, U., Möller, P., Tischer, A. et al. Adaptive mesh refinement using piecewise-linear shape functions based on the blending function method. Engineering with Computers 12, 84–93 (1996). https://doi.org/10.1007/BF01299394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01299394

Keywords

Navigation