Skip to main content
Log in

Rigidity and the Alexandrov-Fenchel inequality

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

New proofs are given for Cauchy's and Alexandrov's classical theorems on the rigidity of polyhedral frameworks, as well as their higher dimensional generalizations. Through duality, the rigidity of these frameworks follows from characterizations of the case of equality in Minkowski's quadratic inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A. D.: On the theory on mixed volumes II. Mat. Sbornik44, 1205–1238 (1937).

    Google Scholar 

  2. Alexandrov, A. D.: Konvexe Polyeder. Berlin: Akademie-Verlag. 1958.

    Google Scholar 

  3. Asimow, L., Roth, B.: The rigidity of graphs I. Trans. Amer. Math. Soc.245, 279–289 (1978).

    Google Scholar 

  4. Asimow, L., Roth, B.: The rigidity of graphs II. J. Math. Anal. App.68, 171–190 (1979).

    Google Scholar 

  5. Barnette, D.: A proof of the lower bound conjecture for convex polytopes. Pacific J. Math.46, 349–354 (1973).

    Google Scholar 

  6. Bol, G.: Beweis einer Vermutung von H. Minkowski. Abh. Math. Sem. Univ. Hamburg15, 37–56 (1943).

    Google Scholar 

  7. Bonnesen, T., Fenchel, W.: Theorie der Konvexen Körper. Berlin: Springer. 1934.

    Google Scholar 

  8. Busemann, H.: Convex Surfaces. New York: Interscience Publ. 1958.

    Google Scholar 

  9. Connelly, R.: The rigidity of certain cabled frameworks and the second order rigidity of arbitrary triangulated convex surfaces. Adv. Math.37, 272–299 (1980).

    Google Scholar 

  10. Connelly, R.: Rigidity and energy. Invent. Math.66, 11–33 (1982).

    Google Scholar 

  11. Connelly, R., Whiteley, W.: Second-order rigidity and pre-stress stability. Preprint.

  12. Crapo, H., Whiteley, W.: Plane stresses and projected polyhedra. Univ. of Montreal. Preprint. 1977.

  13. Crapo, H., Whiteley, W.: Statics of frameworks and motions of panel structures: a projective geometry introduction. Struct. Top.6, 42–82 (1982).

    Google Scholar 

  14. Cremona, L.: Graphical Statics. Oxford: Univ. Press. 1890.

    Google Scholar 

  15. Dehn, M.: Über die Starrheit Konvexer Polyeder. Math. Ann.77, 466–473 (1916).

    Google Scholar 

  16. Ewald, G.: On the equality case in Alexandrov-Fenchel's inequality for convex bodies. Geom. Dedicata28 218–220 (1988).

    Google Scholar 

  17. Favard, J.: Sur les corps convexes. J. Math. Pures Appl.12, 219–282 (1933).

    Google Scholar 

  18. Filliman, P.: The volumes of duals and section of polytopes. Preprint.

  19. Gluck, H.: Almost all simply connected closed surfaces are rigid. In Geometric Topology. Lect. Notes Math.438, pp. 225–239. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

  20. Hopcroft, J., Kahn. P.: A paradigm for robust geometric algorithms. Algorithmica. To appear.

  21. Kahn, P.: Small perturbations of stressed graphs. Technical report. MSI, Cornell Univ. 1990.

  22. Kalai, G.: Rigidity and the lower bound theorem 1. Invent. Math.88, 125–151 (1987).

    Google Scholar 

  23. Kalai, G.: The g-theorem for spheres. In preparation.

  24. Kann, E.: Infinitesimal rigidity of almost convex oriented polyhedra of arbitrary Euler characteristic. Preprint.

  25. Lee, C.: Some recent results on convex polytopes. Preprint.

  26. Lee, C.: PL-spheres and convex polytopes. In preparation.

  27. Leichtweiss, K.: Konvexe Mengen. Berlin-Heidelberg-New York: Springer. 1980.

    Google Scholar 

  28. Lyusternik, L. A.: Convex Figures and Polyhedra. Boston: D.C. Heath and Co. 1966.

    Google Scholar 

  29. Maxwell, J. C.: On reciprocal figures and diagrams of forces. Phil. Mag. (4),27, 205–261 (1864).

    Google Scholar 

  30. McMullen, P.: The maximum numbers of faces of convex polytope. Mathematika17, 179–184 (1970).

    Google Scholar 

  31. McMullen, P.: Metrical properties of convex sets. Notes.

  32. Pogorelov, A. V.: Extrinsic Geometry of Convex Surfaces. Providence: Amer. Math. Soc. 1973.

    Google Scholar 

  33. Rankine, W.: Principle of the equilibrium of polyhedral frames. Phil. Mag. (4)27, 92 (1862).

    Google Scholar 

  34. Roth, B.: Rigid and flexible frameworks. Amer. Math. Month.88, 6–21 (1981).

    Google Scholar 

  35. Schneider, R.: On the Alexandrov-Fenchel Inequality. In: Discrete Geometry and Convexity (eds.:J. Goodman, et al.) Ann. New York Acad. Sci.440, 132–141 (1985).

  36. Simlansky, Z.: Decomposability of polytopes and polyhedra. Geom. Dedicata24, 29–49 (1987).

    Google Scholar 

  37. Stanley, R.: Hilbert functions of graded algebras. Adv. Math.28, 57–83 (1978).

    Google Scholar 

  38. Stanley, R.: The number of faces of a simplicial convex polytope. Adv. Math.35, 236–238 (1980).

    Google Scholar 

  39. Tay, T. S., Whiteley, W.: Generating all isostatic frameworks. Struct. Top.11, 21–70 (1985).

    Google Scholar 

  40. Tutte, W.: How to draw a graph. Proc. London Math. Soc. (3)13, 743–768 (1963).

    Google Scholar 

  41. Whiteley, W.: Motions and stresses of projected polyhedra. Struct. Top.7, 13–38 (1982).

    Google Scholar 

  42. Whiteley, W.: Infinitesimally rigid polyhedra I, statics of frameworks. Trans. Amer. Math. Soc.285, 431–465 (1984).

    Google Scholar 

  43. Whiteley, W.: The combinatorics of bivariate splines. To appear in V. Klee Festschrift.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filliman, P. Rigidity and the Alexandrov-Fenchel inequality. Monatshefte für Mathematik 113, 1–22 (1992). https://doi.org/10.1007/BF01299302

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01299302

Keywords

Navigation