Skip to main content
Log in

Weakly almost periodic functions on hypergroups

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The results about weakly almost periodic functions on topological groups can only partly be transferred to the case of hypergroups. The main achievements of this paper are the construction of a bounded continuous, but not w.a.p. function (which is in this generality even new for groups) and the result that WAP (K) is not an algebra in general. Finally we compare “classical” w.a.p. functions on [FIA] B -groups with those on the orbit spaceG B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burckel, R. B.: Weakly Almost Periodic Functions on Semigroups.New York: Gordon and Breach. 1970.

    Google Scholar 

  2. Chilana, A. K., Ross, K. A.: Spectral synthesis in hypergroups. Pacific J. Math.76, 313–328 (1978).

    Google Scholar 

  3. Dixmier, J.: LesC *-Algèbres et leurs Représentations. Paris: Gauthier-Villars. 1969.

    Google Scholar 

  4. Dixmier, J.: Les moyennes invariantes dans les semi-groupes et leurs applications. Acta Sci. Math. Szeged12A, 213–227 (1950).

    Google Scholar 

  5. Eberlein, W. F.: Abstract ergodic theorems and weakly almost periodic functions. Trans. Amer. Math. Soc.67, 217–240 (1949).

    Google Scholar 

  6. Eberlein, W. F.: Weak compactness in Banach spaces I. Proc. Nat. Acad. Sci. U.S.A.33, 51–53 (1947).

    Google Scholar 

  7. Grothendieck, A.: Critères de compacité dans les espaces fonctionnels generaux. Amer. J. Math.74, 168–186 (1952).

    Google Scholar 

  8. Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis II. Berlin-Heidelberg-New York: Springer. 1970.

    Google Scholar 

  9. Jewett, R. I.: Spaces with an abstract convolution of measures. Advances Math.18, 1–101 (1975).

    Google Scholar 

  10. Lasser, R.: Almost periodic functions on hypergroups. Math. Ann.252, 183–196 (1980).

    Google Scholar 

  11. Lasser, R.: Fourier—Stieltjes transforms on hypergroups. (To appear.)

  12. Lasser, R.: Orthogonal polynomials and hypergroups. (To appear.)

  13. Mosak, R.: TheL 1-andC *-algebras of [FIA] B -groups and their representations. Trans. Amer. Math. Soc.163, 277–310 (1972).

    Google Scholar 

  14. Ramirez, D. E.: Weakly almost periodic functions. Symp. Math.22, 1–20 (1977).

    Google Scholar 

  15. Rudin, W.: Fourier Analysis on Groups. New York: Interscience. 1962.

    Google Scholar 

  16. Spector, R.: Apercu de la théorie des hypergroupes.In: Analyse Harmonique sur les Groupes de Lie. Lect. Notes Math. 497, pp. 643–673. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

  17. Spector, R.: Mesures invariantes sur les hypergroupes. Trans. Amer. Math. Soc.239, 147–165 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfenstetter, S. Weakly almost periodic functions on hypergroups. Monatshefte für Mathematik 96, 67–79 (1983). https://doi.org/10.1007/BF01298935

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01298935

Keywords

Navigation