Zeitschrift für Physik A Hadrons and Nuclei

, Volume 352, Issue 2, pp 119–126 | Cite as

Description of isovector giant dipole resonances in relativistic Vlasov equation at small amplitude limit

  • B. S. Zhou
  • Y. H. Cai
  • Z. Y. Zhu
Nuclear Structure and Reaction


A more general relativistic Vlasov equation has been derived in the framework of relativistic quantum hadron dynamical theory. In the small amplitude limit we use this Vlasov equation to study the isovector giant dipole resonances built on groundstate in spherical nuclei16O,40Ca,90Zn and208Pb. The results show that the spin-orbit coupling and the non-linear terms of scalar meson can influence the resonance energies to a certain extent comparing with those obtained from the non-relativistic Vlasov equation approach and are in good agreement with the experimental ones, especially for the case which vacuum fluctuation is included.


21.10.−k 24.30.Cz 24.10Jv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L'Huillier, M., Giai, N.V.: Phys. Rev. c 39, 2022 (1989)Google Scholar
  2. 2.
    Nishizaki, S., Kurasawa H., Suzuki, T.: Nucl. Phys. A462, 687 (1987)Google Scholar
  3. 3.
    Brink, D.M., A. Dellafiore, Di Toro, M.: Nucl, Phys. A456, 205 (1986)Google Scholar
  4. 4.
    Burgio, G.F., Di Toro, M.: Nucl. Phys. A476, 189 (1988)Google Scholar
  5. 5.
    Di Toro, M.:Winter Collegeon Fundamental Nuclear Physics. (ed.) Dietrich, K., Di Toro, M., Mang, H.J. (World-Scientific, Singapore, 1985), Vol. I, p. 451Google Scholar
  6. 6.
    Cai Yanhuang, Di Toro, M.: Phys. Rev. c39, 105 (1989) Cai Yanhuang: High Energy Phys. and Nucl. Phys. 17, 840 (1993)Google Scholar
  7. 7.
    Boguta, J., Bodmer, A.R.: Nucl. Phys. A 292, 413 (1977)Google Scholar
  8. 8.
    Wasson, D.A.: Phys. Lett. B210, 41 (1988) Zhu, Z.Y., Mang, H.J., Ring, P.: Phys. Lett. B 254, 325 (1991)Google Scholar
  9. 9.
    Ko, C.M., Li, Q., Wang, R.C.: Phys. Rev. Lett 59, 1084 (1987)Google Scholar
  10. 10.
    Bohr, A., Mottelson, B. R.: Nuclear Structure. Vol. II, (Benjamin, Reading, 1975), pp. 378–379Google Scholar
  11. 11.
    Koepf, W., Ring, P.: Z. Phys. A 339, 81 (1991)Google Scholar
  12. 12.
    Lee, S.J., Fink, J., Balantekin, A.B., Strayer, M.R., Umar, A.R., Reinhard, P.G., Ma-ruhn, J.A., Greiner, W.: Phys. Rev. Lett. 59, 1171 (1987)Google Scholar
  13. 13.
    Hsia, L.C., Klemt, V.: Nucl. Phys. A364, 93 (1981)Google Scholar
  14. 14.
    Ring, P., Schuck, P.: The Nuclear Many-Body Problem. (Springer-Verlag, New York, 1980), p. 329, p. 281Google Scholar
  15. 15.
    Liu, K.F., Van Giai, N.: Phys. Lett. B 65, 723 (1976)Google Scholar
  16. 16.
    Lipparini, E., Stringari, S.: Nucl. Phys. A 482, 214c (1988)Google Scholar
  17. 17.
    Vretenar, D., Berghammer, H., Ring, P.: Phys. Lett. B 319, 29 (1993)Google Scholar
  18. 18.
    Horowitz, C.J., Serot, B.D.: Nucl. Phys. A368, 503 (1981)Google Scholar
  19. 19.
    Reinhard, P.G., Rufa, M., Maruhn, J., Greiner, W., Friedrich, J.: Z. Phys. A 323, 13 (1986)Google Scholar
  20. 20.
    Horowitz, C.J., Serot, B.D.: Phys. Lett. B140, 181 (1984)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • B. S. Zhou
    • 2
  • Y. H. Cai
    • 1
    • 2
  • Z. Y. Zhu
    • 2
  1. 1.Cina Center of Advanced Science and Technology (World Laboratory)BeijingChina
  2. 2.Institute of Nuclear ResearchAcademia SinicaShanghaiChina

Personalised recommendations