Abstract
LetK be the structure got by forgetting the composition law of morphisms in a given category. A linear representation ofK is given by a map V associating with any morphism ϕ: a→e ofK a linear vector space map V(ϕ): V(a)→V(e). We classify thoseK having only finitely many isomorphy classes of indecomposable linear representations. This classification is related to an old paper by Yoshii [3].
Preview
Unable to display preview. Download preview PDF.
Literatur
- [1]CHAPTAL N.: Objets indécomposables dans certaines catégories de foncteurs, C.R. Acad. Sc. Paris, 268, 934–936 (1969).MathSciNetzbMATHGoogle Scholar
- [2]JANS J.P.: On the indecomposable Representations of Algebras, Ann. of Math., 66, p. 418–429 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
- [3]YOSHII T.: On Algebras of Bounded Representation Type, Osaka Math. J., 8, 51–105 (1956).MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer-Verlag 1972