Skip to main content
Log in

Zur Theorie der harmonischen Differentialformen

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Generalizing harmonic differential forms (rot ω=0, div ω=0 in M, M being a smooth riemannian manifold with boundary) of first and second kind (ω=0 and *ω=0 on ∂M resp.) within the framework of Hilbert space notation, it is possible to extend the meaning of the boundary conditions to non-smooth boundaries. It turns out that in this case the classical result is still valid for certain open subregions G of M: The dimension of the space of harmonic differential forms of second kind is given by the q-th Betti number of G; *-duality leads to the respective result for harmonic differential forms of first kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. AGMON, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965)

    Google Scholar 

  2. DUFF, G.F.D.: Differential Forms in Manifolds with Boundary. Ann. of Math.56, 115–127 (1952)

    Google Scholar 

  3. DUFF, G.F.D., SPENCER, D.C.: Harmonic Tensors on Riemannian Manifolds with Boundary. Ann. of Math.56, 128–156 (1952)

    Google Scholar 

  4. GOLDBERG, S.I.: Curvature and Homology. Academic Press, New York (1962)

    Google Scholar 

  5. HERMANN, P.: Über eine Verallgemeinerung der alternierenden Ableitung von Differentialformen II. Math. Nachr.52, Heft 1–6, 101–111 (1972)

    Google Scholar 

  6. HICKS, N.J.: Notes on Differential Geometry Van Nostrand, Princeton (1965)

    Google Scholar 

  7. KRESS, R.: Potentialtheoretische Randwertprobleme bei Tensorfeldern beliebiger Dimensionen und beliebigen Ranges. Arch. Rational Mech. Anal.47, 59–80 (1972)

    Google Scholar 

  8. MORREY, C.B.: A Variational Method in the Theory of Harmonic Integrals II. Amer. Jour. Math.78, 137–170 (1956)

    Google Scholar 

  9. MÜLLER, C.: Spherical Harmonics. Springer, Berlin (1966)

    Google Scholar 

  10. PICARD, R.: Ein Randwertproblem für die zeitunabhängigen Maxwellschen Gleichungen mit der Randbedingung nεE=nμH=0 in beschränkten Gebieten beliebigen Zusammenhangs. App. Analysis, Vol.6, 207–221 (1977)

    Google Scholar 

  11. PICARD, R.: Ein Kompaktheitsresultat in der Theorie der verallgemeinerten Maxwellgleichungen, Sonderforschungsbereich 72 “Approximation und Optimierung”, preprint no 120 (1977)

  12. SCHÄFKE, F. W.: Einführung in die Theorie der speziellen Funktionen der mathematischen Physik. Springer, Berlin (1963)

    Google Scholar 

  13. WERNER, P.: Über das Verhalten elektromagnetischer Felder für kleine Frequenzen in mehrfach zusammenhängenden Gebieten I, Innenraumprobleme. J. Reine Angew. Math.278/279 365–397 (1975)

    Google Scholar 

  14. WERNER, P.: Über das Verhalten elektromagnetischer Felder für kleine Frequenzen in mehrfach zusammenhängenden Gebieten II, Außenraumprobleme. J. Reine Angew. Math.280, 98–121 (1976)

    Google Scholar 

  15. WEYL, H.: The Method of Orthogonal Projection in Potential Theory. Duke Math. Jour.7, 411–444 (1940)

    Google Scholar 

  16. WEYL, H.: Die natürlichen Randwertaufgaben im Außenraum für Strahlungsfelder beliebiger Dimensionen und beliebigen Ranges. Math. z.56, 105–119 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picard, R. Zur Theorie der harmonischen Differentialformen. Manuscripta Math 27, 31–45 (1979). https://doi.org/10.1007/BF01297736

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01297736

Navigation