Skip to main content
Log in

Nonsteady transfer in disperse and heterogeneous media

  • Published:
Journal of engineering physics Aims and scope

Abstract

The Laplace transform is used to obtain a unique equation for describing essentially nonsteady heat or mass transfer in a heterogeneous medium. The equation is used to analyze the heating of a half-space through a plane boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

parameter introduced in (11)

a :

particle radius

b:

coefficient accounting for irregularity of particle packing near the wall

c:

heat capacity

d:

density

Fo:

dimensionless time (Fourier number)

k, k′:

dimensionless parameters determined in (8) and (10)

Nu:

Nusselt number

n:

numerical concentration of particles

p:

Laplace transform parameter

Qw :

dimensional heat flux to the granular layer from the wall

q:

heat flux to a particle

R:

contact thermal resistance

r:

radial coordinate in the system connected with the particle

Ti :

mean temperatures of the phases

Tw :

wall temperature

t:

time

u:

rate of convective transport

x:

space coordinate

α:

parameter in (3)

ε:

porosity

ki :

thermal diffusivity of the materials of the phases

κ:

parameter in (15)

gl:

thermal conductivity

gl* :

effective thermal conductivity

ξ:

dimensionless coordinate

τ:

temperature inside particle

1 and 2:

pertain to the continuous and discrete phases, respectively; an asterisk above a quantity denotes its Laplace transform

Literature cited

  1. N. V. Antonishin and V. V. Lushchikov, Transport Processes in Units with Disperse Systems [in Russian], Minsk (1986), pp. 3–25.

  2. A. P. Baskakov, V. V. Berg, A. F. Ryzhkov, and N. F. Filippovskii, Heat and Mass Transfer Processes in a Fluidized Bed [in Russian], Moscow (1978).

  3. Yu. A. Buevich, Inzh.-Fiz. Zh.,54, No. 5, 770–779 (1988).

    Google Scholar 

  4. A. P. Baskakov, Inzh.-Fiz. Zh.,12, No. 5, 599–604 (1967).

    Google Scholar 

  5. A. G. Gorelik, Inzh.-Fiz. Zh.,13, No. 6, 931–936 (1967).

    Google Scholar 

  6. N. V. Antonishin, N. V. Lyutich, and A. L. Parnas, Heat and Mass Transfer in Heat Treatment of Disperse Materials [in Russian], Minsk (1974), pp. 3–6.

  7. J. S. M. Botterill and J. R. Williams, Trans. Inst. Chem. Eng.,41, No. 5, 217–230 (1963).

    Google Scholar 

  8. J. Gabor, Chem. Eng. Progr. Symp. Ser., Vol. 66, No. 105, 76–86 (1970).

    Google Scholar 

  9. J. Botterill, Heat Transfer in a Fluidized Bed [Russian translation], Moscow (1980).

  10. G. Carslaw and D. Jaegar, Thermal Conductivity of Solids [Russian translation], Moscow (1964).

  11. V. I. Krylov and N. S. Skoblya, Handbook of Numerical Laplace Transformation [in Russian], Minsk (1968).

  12. I. I. Kal'tman and A. I. Tamarin, Inzh.-Fiz. Zh.,16, No. 4, 630–638 (1969).

    Google Scholar 

  13. G. F. Puchkov, Heat and Mass Transfer in Disperse Systems [in Russian], Minsk (1982), pp. 29–33.

  14. S. P. Detkov, Prom. Teplotekh.,7, No. 2, 99–105 (1985).

    Google Scholar 

  15. Yu. A. Buevich, Yu. A. Korneev, and I. N. Shchelchkova, Inzh.-Fiz. Zh.,30, No. 6, 979–985 (1976).

    Google Scholar 

  16. B. S. Endler, Inzh.-Fiz. Zh.,37, No. 1, 110–117 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 5, pp. 779–787, May, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buevich, Y.A., Ustinov, V.A. & Khuzhaerov, B. Nonsteady transfer in disperse and heterogeneous media. Journal of Engineering Physics 56, 552–558 (1989). https://doi.org/10.1007/BF01297605

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01297605

Keywords

Navigation