Skip to main content
Log in

The energy injection into a fluid by stochastic volume forces and random stirring forces

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The wavenumber spectrum of the stationary energy injection rate into an incompressible fluid described by the Navier-Stokes equations is evaluated for some simple realizations of stochastic volume as well as stirring forces. A general relation between energy injection, fluid's response, and force correlations is derived which was previously shown to be particularly simple for Gaussian distributed forces with white noise frequency spectrum. For two kinds of such model volume forces the energy injection rates are calculated: Fluid volume elements of variable size around randomly chosen positions are forced in one model centralsymmetrically in the other one anti-symmetrically under inversion with various force density profiles. The circumstances under which both models display an energy injection rate ∼k −1 into a bandd k around the wavenumberk are discussed. As a simple realization of stochastic stirring forces externally moved hard spheres immersed in the fluid are considered. The equation of motion and energy balance for the velocity field of the combined system is discussed. The spectral distribution of energy injection by stirring is shown to be that of a volume force model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Oxford: Pergamon Press 1975

    Google Scholar 

  2. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics. Vol. I and II. Cambridge: MIT 1975

    Google Scholar 

  3. For a review with many references see the articles. In: Turbulence. Bradshaw, P. (ed.) Topics in Applied Physics. Vol. 12. Berlin, Heidelberg, New York: Springer Verlag 1978

    Google Scholar 

  4. Hinze, J.O.: Turbulence. Maidenhead: McGraw Hill 1975

    Google Scholar 

  5. Tritton, D.J.: Physical fluid dynamics. New York: van Nostrand Reinhold 1977

    Google Scholar 

  6. Rotta, J.C.: Turbulente Strömungen. Stuttgart: B.G. Teubner 1972

    Google Scholar 

  7. Tennekes, H., Lumley, J.L.: A first Course in Turbulence. Cambridge: MIT Press 1972

    Google Scholar 

  8. Batchelor, G.K.: The theory of homogeneous turbulence. New York: Cambridge University Press 1953

    Google Scholar 

  9. Kraichnan, R.H.: Phys. Rev.109, 1407 (1958)

    Google Scholar 

  10. Wyld, H.W.: Ann. Phys. (N.Y.)14, 143 (1961)

    Google Scholar 

  11. Edwards, S.F.: J. Fluid Mech.18, 239 (1964)

    Google Scholar 

  12. Kraichnan, R.H.: J. Fluid Mech.5, 497 (1959)

    Google Scholar 

  13. Lewis, R.H., Kraichnan, R.H.: Commun. Pure Appl. Math.15, 397 (1962)

    Google Scholar 

  14. Lee, L.L.: Ann. Phys. (N.Y.)32, 292 (1965)

    Google Scholar 

  15. Herring, J.R.: Phys. Fluids8, 2219 (1965)

    Google Scholar 

  16. Hosokawa, I.: J. Phys. Soc. Jpn.25, 271 (1968)

    Google Scholar 

  17. Edwards, S.F., McComb, W.D.: J. Phys. A2, 157 (1969)

    Google Scholar 

  18. Nelkin, M.: Phys. Rev. A9, 388 (1974)

    Google Scholar 

  19. Phythian, R.: J. Phys. A8, 1423 (1975)

    Google Scholar 

  20. Garrido, L., San Miguel, M.: Prog. Theor. Phys.59, 40 (1978)

    Google Scholar 

  21. Horner, H., Lipowsky, R.: Z. Phys. B-Condensed Matter33, 223 (1979)

    Google Scholar 

  22. Lilly, D.K.: Phys. Fluids12, Suppl. II, 240 (1969)

    Google Scholar 

  23. Fyfe, D., Montgomery, D., Joyce, G.: J. Plasma Phys.17, 369 (1977)

    Google Scholar 

  24. Novikov, E.A.: Sov. Phys. JETP20, 1290 (1965)

    Google Scholar 

  25. Martin, P.C., Siggia, E.D., Rose, H.A.: Phys. Rev. A8, 423 (1973)

    Google Scholar 

  26. Forster, D., Nelson, D.R., Stephen, M.J.: Phys. Rev. A16, 732 (1977)

    Google Scholar 

  27. Enz, C.P.: Physica94A, 20 (1978)

    Google Scholar 

  28. Lücke, M.: Phys. Rev. A18, 282 (1978)

    Google Scholar 

  29. Dominicis, C.De, Martin, P.C.: Phys. Rev. A19, 419 (1979)

    Google Scholar 

  30. Pouquet, A., Fournier, J.D., Sulem, P.L.: J. Phys. Paris39L, 199 (1979)

    Google Scholar 

  31. Pouquet, A., Lesieur, M., André, J.C., Basdevant, C.: J. Fluid Mech.72, 305 (1975)

    Google Scholar 

  32. Frisch, U., Lesieur, M., Sulem, P.: Phys. Rev. Lett.37, 895 (1976)

    Google Scholar 

  33. Fournier, J.D., Frisch, U.: Phys. Rev. A17, 747 (1978)

    Google Scholar 

  34. Hohenberg, P.C., Halperin, B.I.: Rev. Mod. Phys.49, 435 (1977)

    Google Scholar 

  35. Deker, U., Haake, F.: Phys. Rev. A11, 2043 (1975)

    Google Scholar 

  36. Graham, R., Haken, H.: Z. Phys.243, 289 (1971)

    Google Scholar 

  37. Haken, H.: Synergetics. An Introduction. 2nd ed. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  38. Mori, H., Fujisaka, H.: Prog. Theor. Phys.49, 764 (1973)

    Google Scholar 

  39. Hosokawa, I.: J. Stat. Phys.15, 87 (1976)

    Google Scholar 

  40. Ruelle, D.: Phys. Lett.72 A, 81 (1979)

    Google Scholar 

  41. Fox, R.F.: J. Math. Phys.19, 1993 (1978); Phys. Rep.48, 179 (1978)

    Google Scholar 

  42. Molen, K. van der, Maanen, H.R.E. van: Chem. Sci. Eng.33, 1161 (1978)

    Google Scholar 

  43. Kolmogorov, A.N.: C.R. Acad. Sci. USSR30, 301 (1941)

    Google Scholar 

  44. Orszag, S.A.: In: Fluid Dynamics. Balian, R., Peube, J.L. (eds.). New York: Gordon and Breach 1977

    Google Scholar 

  45. Rose, H.A., Sulem, P.L.: J. Phys.39, 441 (1978)

    Google Scholar 

  46. Martin, P.C., Dominicis, C. de: Suppl. Prog. Theor. Phys.64, 108 (1978)

    Google Scholar 

  47. See e.g. Batchelor, G.K.: An Introduction to Fluid Dynamics. London: Cambridge University Press 1967; Curle, N., Davies, H.J.: Modern Fluid Dynamics. Vol. 1. London: van Nostrand 1968

    Google Scholar 

  48. Aris, R.: Vectors, Tensors and the Basic Equations of Fluid Mechanics. Englewood Cliffs: Prentice-Hall 1962

    Google Scholar 

  49. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. London: Oxford University Press 1961

    Google Scholar 

  50. Kraichnan, R.H.: Phys. Fluids10, 1417 (1967)

    Google Scholar 

  51. Martin, P.C.: In: Problème àN corps. Witt, D. de, Balian, R. (ed.). New York: Gordon and Breach 1968

    Google Scholar 

  52. Forster, D.: Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. Reading: W.A. Benjamin 1975

    Google Scholar 

  53. Lücke, M., Zippelius, A.: Z. Phys. B-Condensed Matter31, 201 (1978)

    Google Scholar 

  54. Lücke, M.: Suppl. Prog. Theor. Phys.64, 124 (1978)

    Google Scholar 

  55. Hove, L. van: Phys. Rev.95, 249 (1954)

    Google Scholar 

  56. Egelstaff, P.A.: An Introduction to the Liquid State. London: Academic Press 1967

    Google Scholar 

  57. Lücke, M.: (unpublished)

  58. Here the notation of [32],

    Google Scholar 

  59. Desnianskii, V.N., Novikov, E.A.: Prikl. Math. Mekh. (transl. J. Appl. Math. Mech.)38, 507 (1974)

    Google Scholar 

  60. Bell, T.L., Nelkin, M.: Phys. Fluids20, 345 (1977)

    Google Scholar 

  61. Janssen, H.K.: Z. Phys. B-Condensed Matter23, 377 (1976)

    Google Scholar 

  62. Phythian, R.: J. Phys. A10, 777 (1977)

    Google Scholar 

  63. See e.g. Bausch, R., Janssen, H.K., Wagner, H.: Z. Phys. B-Condensed Matter24, 113 (1976)

    Google Scholar 

  64. Dominicis, C. de, Peliti, L.: Phys. Rev. B18, 353 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lücke, M. The energy injection into a fluid by stochastic volume forces and random stirring forces. Z. Physik B - Condensed Matter 43, 253–268 (1981). https://doi.org/10.1007/BF01297526

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01297526

Keywords

Navigation