Skip to main content
Log in

Bifunctional electrodes for an integrated water-electrolysis and hydrogen-oxygen fuel cell with a solid polymer electrolyte

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An alternative concept of an integrated water electrolysis/hydrogen-hydrogen fuel cell using metal electrocatalysts and a solid polymer electrolyte is described. Instead of operating both electrodes as hydrogen and oxygen electrodes respectively the electrodes are used as oxidation and reduction electrodes in both modes of operation. A more suitable selection of electrocatalysts and an improved cell design are possible; both can increase the efficiency of the cell considerably. New results on the electrocatalytic activity of various noble-metal containing catalysts with respect to both oxygen evolution and hydrogen oxidation in a proton exchange membrane-cell at 80°C are reported. Kinetic data derived from Tafel plots of the oxygen evolution polarization curves agree closely with those of experiments with aqueous sulphuric acid electrodes. This agreement allows the determination of kinetic parameters for electrocatalysts difficult to prepare in solid smooth electrodes but easy to be made into porous deposits. Polarization curves of the hydrogen oxidation reaction clearly indicate a relative activity rating of the studied catalysts. In cycling tests the lifetime stability of the new bifunctional oxidation electrode was determined. Polarization data obtained under these conditions agree with those obtained in earlier experiments where electrodes were exposed to only one type of oxidation reaction. During a test of 10 cycles (30 min of electrolyser and 30 min of fuel cell mode each) no changes in the electrode potential were observed. With the conventional cell design employing a hydrogen and an oxygen electrode both catalyzed with platinum and a current density of 100 mA cm−2 a storage efficiency of 50% was calculated; with the alternative concept of oxidation and reduction electrodes and selected oxidation catalysts this was improved to 57%. With further improvements these efficiencies seem possible even at current densities of 500 mA cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. W. Justi and E. A. Winsel, ‘Kalte Verbrennung-Fuel Cells’, Franz Steiner Verlag, Wiesbaden (1962) p. 248.

    Google Scholar 

  2. J. S. Bone, S. Gilman, L. W. Niedrach and M. D. Read, in:Proceedings of the Annual Power Source Conf. 14 (1961) 47.

    Google Scholar 

  3. E. Findl and M. Klein; in:Proceedings of the 20th Annual Power Source Conf., PSC Publications Committee, Red Bank (1966) p. 49.

    Google Scholar 

  4. K. Kordesch, K.-H. Steininger and K. Tomantschger, in:Proceedings of the 23rd Intersociety Energy Conversion Eng. Conf. 2 (1988) p. 283.

  5. A. Leonida, in:Proceedings of the European Space Power Conf. (1989) Madrid 1989, p. 227.

  6. L. Swette and J. Giner,J. Power Sources 22 (1988) 399.

    Google Scholar 

  7. D. O. Ham, G. Moniz and E. J. Taylor,22 (1988) 409.

    Google Scholar 

  8. E. Yeager,DE 88 008 397 UNCL, Final Report (1988).

  9. K. Ledjeff, J. Ahn and A. Heinzel,DECHEMA Monographie 121, VCH Weinheim (1990) 109.

    Google Scholar 

  10. J. Ahn and R. Holze,J. Membrane Sci. in the press.

  11. J. Ahn and K. Ledjeff,German Patent P4 027 655 of (1990).

  12. K. Ledjeff, J. Ahn, D. Zylka and A. Heinzel, in:Fuel Cell Seminar 1990, Phoenix, USA November 25–28 (1990) Ext. Abstr. p. 462.

  13. J. Ahn, A. Heinzel and K. Ledjeff, in:DECHEMA Monographie 124, VCH, Weinheim (1991) p. 683.

    Google Scholar 

  14. J. Ahn, Dissertation, Universität Oldenburg (1991).

  15. R. F. Savinell, R. L. Zeller and J. A. Adams,J. Electrochem. Soc. 137 (1990) 489.

    Google Scholar 

  16. R. S. Yeo, J. Orehotsky, W. Visscher and S. Srinivasan,128 (1981) 1900.

    Google Scholar 

  17. S. Stucki and A. Menth, in:Proceedings of the Industrial Water Electrolysis, (edited by S. Srinivasan, A. Salzano and K. Landgrebe) Electrochemical Society, Princeton (1978) p. 180.

    Google Scholar 

  18. P. Millet, R. Durand and M. Pineri, in:Proceedings of the 7th World Hydrogen Energy Conf. (1988) Moscow, Ext. Abstr. p. 367.

  19. ‘Encyclopedia of the Electrochemistry of the Elements’, Vol. 2 (edited by A. J. Bard), M. Dekker, New York (1974) p. 275.

    Google Scholar 

  20. E. Yeager and D. Tryk, in:Proceedings of the 5th World Hydrogen Conference, Toronto (1984) p. 827.

  21. S. Gottesfeld and S. Srinivasan,J. Electrochem. Soc. 86 (1978) 89.

    Google Scholar 

  22. R. Kötz, H. J. Lewerenz, P. Brüsch and S. Stucki,J. Electroanal. Chem. 150 (1983) 209.

    Google Scholar 

  23. R. Kötz and S. Stucki,J. Electrochem. Soc. 132 (1985) 103.

    Google Scholar 

  24. R. S. Yeo, J. Orehotsky, W. Visscher and S. Srinivasan,J. Electrochem. Soc. 128 (1981) 1900.

    Google Scholar 

  25. R. Kötz and S. Stucki,Electrochim. Acta 31 (1986) 1311.

    Google Scholar 

  26. S. Trasatti,Electrochim. Acta 29 (1984) 153.

    Google Scholar 

  27. S. Ardizzone, A. Carugati and S. Trasatti,J. Electroanal. Chem. 126 (1981) 287.

    Google Scholar 

  28. S. Trasatti and W. E. O'Grady,Adv. Electrochem. and Electrochem. Eng. 12 (1981) 117.

    Google Scholar 

  29. C. Angelinetta and S. Trasatti,Materials Chem. Phys. 22 (1989) 231.

    Google Scholar 

  30. G. Lodi, E. Sivieri, A. de Battisti and S. Trasatti,J. Appl. Electrochem. 8 (1978) 135.

    Google Scholar 

  31. J. C. F. Boodts and S. Trasatti,19 (1989) 255.

    Google Scholar 

  32. F. Ludwig, R. K. Sen and E. Yeager,Sov. Electrochem. 13 (1977) 717.

    Google Scholar 

  33. A. B. Khanin, N. A. Aladzholova and N. A. Fedotov,3 (1967) 50.

    Google Scholar 

  34. L. W. Niedrach, D. W. McKee, J. Paynter and I. F. Danzig,J. Electrochem. Soc. 114 (1967) 318.

    Google Scholar 

  35. J. Kosck, N. Kackley and A. LaConti,Proceedings of the 24th Intersoc. Energy Conversion Eng. Conf. 3 (1989) 1581.

    Google Scholar 

  36. A. J. Scarpellino and G. L. Fisher,J. Electrochem. Soc. 129 (1982) 515 and 522.

    Google Scholar 

  37. E. A. Ticianelli, C. R. Derouin and S. Srinivasan,J. Electroanal. Chem. 251 (1988) 275.

    Google Scholar 

  38. R. D. Armstrong and M. F. Bell,Electrochim. Acta 23 (1978) 1111.

    Google Scholar 

  39. R. M. Tarasevich, in:Proceedings of the 7th World Hydrogen Energy Conf. Moscow (1988) p. 483.

  40. R. Holze and E. Yeager,DECHEMA Monographie 98, VCH, Weinheim (1985) p. 499.

    Google Scholar 

  41. R. Holze, J. Ahn and W. Vielstich,DECHEMA Monographie 112, VCH, Weinheim (1988) p. 33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, J., Holze, R. Bifunctional electrodes for an integrated water-electrolysis and hydrogen-oxygen fuel cell with a solid polymer electrolyte. J Appl Electrochem 22, 1167–1174 (1992). https://doi.org/10.1007/BF01297419

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01297419

Keywords

Navigation