Advertisement

Digestive Diseases and Sciences

, Volume 37, Issue 5, pp 751–756 | Cite as

Neuroendocrine changes in rat stomach during experimental diabetes mellitus

  • C. U. Nwokolo
  • E. S. Debnam
  • J. D. Booth
  • R. Sim Fimns
  • E. A. Sankey
  • A. P. Dhillon
  • R. E. Pounder
Original Articles

Abstract

The effects of 48 days of streptozotocin-induced diabetes mellitus in rats on plasma concentrations of gastrin, somatostatin, pancreatic glucagon, and enteroglucagon have been assessed. In addition, neuroendocrine changes in sections of gastric mucosa were quantified using a computer-assisted morphometric system following immunohistochemical staining with polyclonal antibodies directed against gastrin, PGP 9.5 (a neural protein), and somatostatin. Diabetes resulted in significantly increased fasting plasma concentrations of somatostatin, and entero- and pancreatic glucagon. In contrast, lower plasma gastrin concentrations and decreased antral G-cell density were noted in diabetic rats. Gastric somatostatin and neuronal PGP 9.5 stain densities were unaltered by diabetes. Stomachs of diabetic rats weighed less, but both the jejunum and ileum showed evidence of mucosal hyperplasia. The gastric neuroendocrine atrophy observed in diabetes may be a consequence of elevated plasma somatostatin derived from nongastric sources. The enhanced growth of the intestinal mucosa may be related, directly or indirectly, to raised intraluminal glucose concentration in diabetes.

Key Words

diabetes mellitus gastrointestinal morphology gastrin G cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feldman M, Schiller LR: Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med 98:378–384, 1983Google Scholar
  2. 2.
    Thomas PK, Eliasson SG: Diabetic neuropathy.In Peripheral Neuropathy. PJ Dyck, PK Thomas, EH Lambert (eds). Philadelphia, WB Saunders 1975, pp 956–981Google Scholar
  3. 3.
    Chesta J, Debnam ES, Srai SKS, Epstein O: Delayed stomach to caecum transit time in the diabetic rat. Possible role of hyperglucagonaemia. Gut 31:660–662, 1990Google Scholar
  4. 4.
    Scarpello JHB, Sladen GE: Diabetes and the gut. Gut 19:1153–1162, 1978Google Scholar
  5. 5.
    Katz LA, Spiro HM: Gastrointestinal manifestations of diabetes. N Engl J Med 275:1350–1361, 1966Google Scholar
  6. 6.
    Scarpello JHB, Graves M, Sladen GE: Small intestinal transit time in diabetes. Br Med J 2:1225–1226, 1988Google Scholar
  7. 7.
    Creutzfeldt W: The achlorhydria-carcinoid sequence: role of gastrin. Digestion 39:61–79, 1988Google Scholar
  8. 8.
    Schedl HP, Wilson HD, Ramaswamy K, Lichtenberger L: Gastrin and growth of the alimentary tract in the streptozotocin-diabetic rat. Am J Physiol 242:G460-G463, 1982Google Scholar
  9. 9.
    Rudo ND, Lawrence AM, Rosenberg IH: Treatment with glucagon binding antibodies alters the intestinal response to starvation in the rat. Gastroenterology 69:1265–1268, 1975Google Scholar
  10. 10.
    Orci L, Baetens D, Rufener C, Amherdt M, Ravazzola M, Studer P, Malaisse-Lagae F, Unger RH: Hypertrophy and hyperplasia of somatostatin-containing D cells in diabetes. Proc Natl Acad Sci USA 73:1338–1342, 1976Google Scholar
  11. 11.
    Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG: The unlabeled antibody-enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochaetes. J Histochem Cytochem 18:315–333, 1970Google Scholar
  12. 12.
    Hsu SM, Raine L, Fanger H: Use of avidin-biotinperoxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580, 1981Google Scholar
  13. 13.
    Bowen BD, Aron AH: Gastric secretion in diabetes mellitus: Report of 10 diabetic patients who had diarrhea and achlorhydria. Arch Intern Med 37:674–684, 1926Google Scholar
  14. 14.
    Scott LD, Ellis TM: Small intestinal transit and myoelectric activity in diabetic rats.In Gastrointestinal Mortility. J Christensen (ed.) New York, Raven Press, 1980, 395–399Google Scholar
  15. 15.
    Debnam ES, Karasov WH, Thompson CS: Nutrient uptake by rat enterocytes during diabetes mellitus: Evidence for an increased sodium electrochemical gradient. J Physiol 397:503–512, 1988Google Scholar
  16. 16.
    Chang EB, Bergenstal RM, Field M: Diarrhea in streptozotocin treated rats. Loss of adrenergic regulation of intestinal fluid and electrolyte transport. J Clin Invest 75:1666–1670, 1985Google Scholar
  17. 17.
    Lorenz-Meyer H, Thiel F, Menge H, Gottesburen H, Riecken EO: Structural and functional studies on the transformation of the intestinal mucosa in rats with experimental diabetes. Res Exp Med 170:89–99, 1977Google Scholar
  18. 18.
    Lichtenberger LM, Ramaswamy K: Alternations in serum and antral gastrin levels in genetically diabetic mice. Gastroenterology 77:1276–1282, 1979Google Scholar
  19. 19.
    Johnson LR, Lichtenberger LM, Copeland EM, Dudrick SJ, Castro GA: Action of gastrin on gastrointestinal structure and function. Gastroenterology 68:1184–1192, 1975Google Scholar
  20. 20.
    Karakida T, Homma S: Compliance changes of the gastrointestinal tract in streptozotocin-induced diabetic rats. Jpn J Physiol 39:559–570, 1989Google Scholar
  21. 21.
    Debnam ES: Diabetes mellitus and the kinetics of Na+ dependent glucose transport across isolated brush border membrane of rat ileum. J Physiol 438:360P, 1991Google Scholar
  22. 22.
    Jacobs LR, Bloom SR, Dowling RH: Response of plasma and tissue levels of enteroglucagon immunoreactivity to intestinal resection, lactation and hyperplasia. Life Sci 29:2003–2007, 1981Google Scholar
  23. 23.
    Sagor GR, Al-Mukhtar MYT, Ghatei MA, Wright NA, Bloom SR: The effect of altered luminal nutrition on cellular proliferation and plasma concentrations of enteroglucagon and gastrin after small bowel resection in the rat. Br J Surg 69:14–18, 1982Google Scholar
  24. 24.
    Miazza BM, Al-Mukhtar, MYT, Salmeron M, Ghatei MA, Felce-Dachez M, Filali A, Villet R, Wright NA, Bloom SR, Ramband J: Hyperenteroglucagonaemia and small intestinal mucosal growth after colonic perfusion of glucose in rats. Gut 26:518–524, 1985Google Scholar
  25. 25.
    Al-Mukhtar MYT, Sagor GR, Ghatei MA, Polak JM, Koopmans HS, Bloom SR, Wright NA: The relationship between endogenous gastrointestinal hormones and cell proliferation in models of adaptation.In Mechanisms of Intestinal Adaptation. JWL Robinson, RH Dowling, EO Riecken (eds). Lancaster, MTP Press, 1982, pp 243–254Google Scholar
  26. 26.
    Schmidt RE, Nelson JS, Johnson EM: Experimental diabetic autonomic neuropathy. Am J Pathol 103:210–225, 1981Google Scholar
  27. 27.
    Lincoln J, Bokor TT, Crowe R, Griffith SG, Haven AJ, Burnstock G: Myenteric plexus in streptozotocin-treated rats. Neurochemical and histochemical evidence for diabetic neuropathy in the gut. Gastroenterology 86:654–661, 1984Google Scholar
  28. 28.
    Miller DL, Hanson W, Schedl HP, Osborne JW: Proliferation rate and transit time of mucosal cells in small intestine of the diabetic rat. Gastroenterology 73:1326–1332, 1977Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • C. U. Nwokolo
    • 1
    • 2
    • 3
  • E. S. Debnam
    • 1
    • 2
    • 3
  • J. D. Booth
    • 1
    • 2
    • 3
  • R. Sim Fimns
    • 1
    • 2
    • 3
  • E. A. Sankey
    • 1
    • 2
    • 3
  • A. P. Dhillon
    • 1
    • 2
    • 3
  • R. E. Pounder
    • 1
    • 2
    • 3
  1. 1.University Department of MedicineRoyal Free Hospital School of MedicineLondonEngland
  2. 2.University Department of PhysiologyRoyal Free Hospital School of MedicineLondonEngland
  3. 3.University Department of HistopathologyRoyal Free Hospital School of MedicineLondonEngland

Personalised recommendations