Abstract
The irreducible representation labelsλ andμ of the SU(3) shell model are related to the shape variablesβ andγ of the collective model by invoking a linear mapping between eigenvalues of invariant operators of the two theories. All but one parameter of the theory is fixed if the shell-model result is required to reproduce the collective-model geometry. And for one special value of the remaining free parameter there is a simple linear relationship between the eigenvalues, λα, of the quadrupole matrix of the collective model and the SU(3) representation labels:
The correspondence between hamiltonians that describe rotations in each theory is also given. Results are shown for two cases,24Mg and168Er, to demonstrate that the simplest mapping yields excellent results for both energies and transition rates. For λ and/or μ large, the (β, γ)↔(λ,μ) correspondence introduced here reduces to the symplectic shell-model result.
Similar content being viewed by others
References
Carvalho, J., Le Blanc, R., Vassanji, M., Rowe, D.J.: Nucl. Phys. A452, 240 (1987)
Ui, H.: Prog. Theor. Phys.44, 153 (1970)
Carvalho, J.: Ph.D. Thesis, University of Toronto 1984
Rosensteel, G., Rowe, D.J.: Ann. Phys.104, 134 (1977)
Barnard, S., Child, J.M.: Higher algebra. London: MacMillan 1936
Bohr, A., Mottelson, B.: Nuclear structure. Vol. II. Nuclear deformations. Reading: Benjamin 1975
DeVries, H., DeJager, C.W., DeVries, C.: At. Data Nucl. Data Tables36, 495 (1987)
Rowe, D.J.: Rep. Prog. Phys.48, 1419 (1985)
Hess, P.O., Maruhn, J.A., Greiner, W.: In: Future directions in studies of nuclei far from stability. Hamilton, J.H. (ed.), p. 151. Amsterdam: North-Holland 1980
Dennison, D.M.: Phys. Rev.28, 318 (1926)
Reiche, F., Rademacher, H.: Z. Phys.39, 444 (1926);
Kronig, R. de L., Rabe, I.I.: Phys. Rev.29, 262 (1927);
Manneback, C.: Phys. Zeitschr.28, 72 (1927);
Witmer, E.: Proc. Natl. Acad.13, 60 (1927);
Wang, S.C.: Phys. Rev.34, 243 (1929);
Kramers, H.A., Ittmann, G.P.: Z. Phys.53, 553 (1929);
Klein, O.: Z. Phys.58, 730 (1929);
Casimir, H.B.G.: Rotation of a rigid body in quantum mechanics. The Hague: Wolters 1931
Mulliken, R.S.: Rev. Mod. Phys.3, 89 (1931);
Dennison, D.M.: Rev. Mod. Phys.3, 280 (1931);
Mulliken, R.S.: Phys. Rev.59, 89 (1931);
King, G.W., Hainer, R.M., Cross, P.C.: J. Chem. Phys.11, 27 (1943);
Townes, C.H., Schawlow, A.L.: Microwave spectroscopy. New York: McGraw-Hill 1955
Leschber, Y., Draayer, J.P.: Phys. Lett.190, 1 (1987)
Draayer, J.P., Leschber, Y.: In: Symmetries in science II. Gruber, B., Lenczewski, R. (eds.), p. 127. New York: Plenum 1986
Leschber, Y.: Ph.D. Thesis. Louisiana State University 1986
Molien, T.: Preuss. Akad. Wiss. Sitzungsberichte 1152 (1897)
Noether, E.: Math. Ann.77, 89 (1916); Weyl, H.: The classical groups. Princeton N.J. 1946
Author information
Authors and Affiliations
Additional information
Supported in part by a grant from the U.S. National Science Foundation