Skip to main content
Log in

Shape variables and the shell model

  • Nuclear Structure and Spectroscopy
  • Published:
Zeitschrift für Physik A Atomic Nuclei

Abstract

The irreducible representation labelsλ andμ of the SU(3) shell model are related to the shape variablesβ andγ of the collective model by invoking a linear mapping between eigenvalues of invariant operators of the two theories. All but one parameter of the theory is fixed if the shell-model result is required to reproduce the collective-model geometry. And for one special value of the remaining free parameter there is a simple linear relationship between the eigenvalues, λα, of the quadrupole matrix of the collective model and the SU(3) representation labels:

$$\lambda _1 = ( - \lambda + \mu )/3, \lambda _2 = ( - \lambda + 2\mu + 3)/3, \lambda _3 = (2\lambda + \mu + 3)/3.$$

The correspondence between hamiltonians that describe rotations in each theory is also given. Results are shown for two cases,24Mg and168Er, to demonstrate that the simplest mapping yields excellent results for both energies and transition rates. For λ and/or μ large, the (β, γ)↔(λ,μ) correspondence introduced here reduces to the symplectic shell-model result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carvalho, J., Le Blanc, R., Vassanji, M., Rowe, D.J.: Nucl. Phys. A452, 240 (1987)

    Google Scholar 

  2. Ui, H.: Prog. Theor. Phys.44, 153 (1970)

    Google Scholar 

  3. Carvalho, J.: Ph.D. Thesis, University of Toronto 1984

  4. Rosensteel, G., Rowe, D.J.: Ann. Phys.104, 134 (1977)

    Google Scholar 

  5. Barnard, S., Child, J.M.: Higher algebra. London: MacMillan 1936

    Google Scholar 

  6. Bohr, A., Mottelson, B.: Nuclear structure. Vol. II. Nuclear deformations. Reading: Benjamin 1975

    Google Scholar 

  7. DeVries, H., DeJager, C.W., DeVries, C.: At. Data Nucl. Data Tables36, 495 (1987)

    Google Scholar 

  8. Rowe, D.J.: Rep. Prog. Phys.48, 1419 (1985)

    Google Scholar 

  9. Hess, P.O., Maruhn, J.A., Greiner, W.: In: Future directions in studies of nuclei far from stability. Hamilton, J.H. (ed.), p. 151. Amsterdam: North-Holland 1980

    Google Scholar 

  10. Dennison, D.M.: Phys. Rev.28, 318 (1926)

    Google Scholar 

  11. Reiche, F., Rademacher, H.: Z. Phys.39, 444 (1926);

    Google Scholar 

  12. Kronig, R. de L., Rabe, I.I.: Phys. Rev.29, 262 (1927);

    Google Scholar 

  13. Manneback, C.: Phys. Zeitschr.28, 72 (1927);

    Google Scholar 

  14. Witmer, E.: Proc. Natl. Acad.13, 60 (1927);

    Google Scholar 

  15. Wang, S.C.: Phys. Rev.34, 243 (1929);

    Google Scholar 

  16. Kramers, H.A., Ittmann, G.P.: Z. Phys.53, 553 (1929);

    Google Scholar 

  17. Klein, O.: Z. Phys.58, 730 (1929);

    Google Scholar 

  18. Casimir, H.B.G.: Rotation of a rigid body in quantum mechanics. The Hague: Wolters 1931

    Google Scholar 

  19. Mulliken, R.S.: Rev. Mod. Phys.3, 89 (1931);

    Google Scholar 

  20. Dennison, D.M.: Rev. Mod. Phys.3, 280 (1931);

    Google Scholar 

  21. Mulliken, R.S.: Phys. Rev.59, 89 (1931);

    Google Scholar 

  22. King, G.W., Hainer, R.M., Cross, P.C.: J. Chem. Phys.11, 27 (1943);

    Google Scholar 

  23. Townes, C.H., Schawlow, A.L.: Microwave spectroscopy. New York: McGraw-Hill 1955

    Google Scholar 

  24. Leschber, Y., Draayer, J.P.: Phys. Lett.190, 1 (1987)

    Google Scholar 

  25. Draayer, J.P., Leschber, Y.: In: Symmetries in science II. Gruber, B., Lenczewski, R. (eds.), p. 127. New York: Plenum 1986

    Google Scholar 

  26. Leschber, Y.: Ph.D. Thesis. Louisiana State University 1986

  27. Molien, T.: Preuss. Akad. Wiss. Sitzungsberichte 1152 (1897)

  28. Noether, E.: Math. Ann.77, 89 (1916); Weyl, H.: The classical groups. Princeton N.J. 1946

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by a grant from the U.S. National Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casta∼nos, O., Draayer, J.P. & Leschber, Y. Shape variables and the shell model. Z. Physik A - Atomic Nuclei 329, 33–43 (1988). https://doi.org/10.1007/BF01294813

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01294813

PACS

Navigation