Natural bounded concentrators


We give the first known direct construction for linear families of bounded concentrators. The construction is explicit and the results are simple natural bounded concentrators.

Let\(\mathbb{F}_q \) be the field withq elements,g(x)F q [x] of degree greater than or equal to 2,\(H = PGL_2 (\mathbb{F}_q )[x]/g(x)\mathbb{F}_q [x]),{\text{ }}B = PGL_2 (\mathbb{F}_q )\) and\(A = \left\{ {\left. {\left( {\begin{array}{*{20}c} a & {b + cx} \\ 0 & 1 \\ \end{array} } \right)} \right|a \in \mathbb{F}_q^* ;b,c \in \mathbb{F}_q } \right\}\). LetI nputs=H/A,O utputs=H/B, and draw an edge betweenaA andbB iffaA∩bB≠ϕ. We prove that for everyq≥5 this graph is an\(\left( {\left| {H/A} \right|,\frac{q}{{q + 1}},q + 1,\frac{{q - 4}}{{q - 3}}} \right)\) concentrator.

This is a preview of subscription content, access via your institution.


  1. [1]

    N. Alon, Z. Galil, andV. Milman: Better expanders and superconcentrators,J. of Alg. 8 (1987), 337–347.

    MATH  MathSciNet  Article  Google Scholar 

  2. [2]

    L. A. Bassalygo: Asymptotically optimal switching circuits,Problems Information Transmission 17 (1981), 206–211.

    MATH  Google Scholar 

  3. [3]

    V. G. Drinfeld: The proof of Peterson's Conjecture forGL(2) over global field of characteristicp, Functional Analysis and its Applications 22 (1988), 28–43.

    MATH  MathSciNet  Article  Google Scholar 

  4. [4]

    I. Efrat: Automorphic spectra on the tree ofPGL 2,Enseign. Math. 37, (2) (1991), 31–34.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    S. Gelbart:Automorphic Forms on Adele Groups, Princeton University Press, Princeton 1975.

    Google Scholar 

  6. [6]

    O. Gaber, andZ. Galil: Explicit construction of linear sized superconcentrators,J. of Comp Sys. Sci. 22 (1981), 407–420.

    Article  Google Scholar 

  7. [7]

    I. M. Gelfand, M. I. Graev, andI. I. Pyatetskii-Shapiro:Representation Theory and Automorphic Functions, W. B. Saunders Com., 1969.

  8. [8]

    D. Gorenstein:Finite Groups, Chelsea, 1980.

  9. [9]

    M. Klawe: Limitations on explicit constructions of expanding graphs,SIAM J. Comp. 13 (1984) 155–156.

    MathSciNet  Google Scholar 

  10. [10]

    S. Lang: SL2(R), Springer-Verlag, New-York, 1985.

    Google Scholar 

  11. [11]

    A. Lubotzky, R. Phillips, andP. Sarnak: Ramanujan graphs,Combinatorica 8(3) 1988, 261–277.

    MATH  MathSciNet  Article  Google Scholar 

  12. [12]

    A. Lubotzky:Discrete Groups, Expanding Graphs and Invariant Measures, Birkhauser Progress in Math, 1994.

  13. [13]

    G. A. Margulis: Explicit construction of concentrators,Problems of Inform. Transmission (1975), 325–332.

  14. [14]

    M. Morgenstern: Ramanujan diagrams,SIAM J. of Discrete Math., November 1994.

  15. [15]

    M. Morgenstern: Existence and explicit construction ofq+1 regular Ramanujan graphs for every prime powerq, J. Combinatorial Theory, Series B,62 (1) (1994), 44–62.

    MATH  MathSciNet  Article  Google Scholar 

  16. [16]

    M. Morgenstern: Ramanujan Diagrams and Explicit Construction of Expanding Graphs,Ph.D. Thesis, Hebrew Univ. of Jerusalem, 1990.

  17. [17]

    G. Prasad: Strong approximation for semi-simple groups over function fields,Ann. of Math. 105 (1977) 553–572.

    MATH  MathSciNet  Article  Google Scholar 

  18. [18]

    J. P. Serre:Trees, Springer-Verlag, 1980.

  19. [19]

    A. Siegel: On universal classes of fast high performance hash functions, their time-space tradeoff, and their applications,30th Annual IEEE conference on Foundations of Computer Science, (1989), 20–25.

  20. [20]

    R. M. Tanner: Explicit concentrators from generalizedn-gons,SIAM J. of Alg. Disc. Math. 5 (1984), 287–294.

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information



Additional information

Part of this research was done while the author was at the department of Computer Science, The University of British Columbia, Vancouver, B.C., Canada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morgenstern, M. Natural bounded concentrators. Combinatorica 15, 111–122 (1995).

Download citation

Mathematics Subject Classification (1991)

  • Primary: 05 C 35
  • Secondary: 05 C 25