On the second eigenvalue of hypergraphs

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Ajtai, J. Komlós, andE. Szemerédi: Deterministic simulation in LOGSPACE,STOC, (1987), 132–139.

  2. [2]

    N. Alon: Eigenvalues and expanders,Combinatorica,6 (2) (1986), 83–96.

    MATH  MathSciNet  Google Scholar 

  3. [3]

    N. Alon: Eigenvalues, geometric expanders, sorting in rounds and ramsey theory,Combinatorica,6 (6) (1986), 207–219.

    MATH  MathSciNet  Google Scholar 

  4. [4]

    M. Blum: Independent unbiased coin flips from a correlated sources: a finite state markov chain,FOCS, (1984), 425–433.

  5. [5]

    Andrei Broder, andEli Shamir: On the second eigenvalue of random regular graphs, In28th Annual Symposium on Foundations of Computer Science, (1987) 286–294.

  6. [6]

    F. Bruhat, andJ. Tits:Publ. Math. IHES, 1971.

  7. [7]

    B. Chor, andO. Goldriech: Unbiased bits from sources of weak randomness and probabilistic communication complexity,FOCS, (1985), 429–442.

  8. [8]

    F. R. K. Chung: Diameters and eigenvalues,J. AMS. 2 (1989), 187–196.

    MATH  Google Scholar 

  9. [9]

    A. Cohen, andA. Wigderson: Dispersers, deterministic amplification, and weak random sources,FOCS, (1989), 14–19.

  10. [10]

    J. Friedman, J. Kahn, andE. Szemerédi: On the second eigenvalue of random graphs,STOC, (1989), 587–598.

  11. [11]

    J. Friedman: On the second eigenvalue and random walks of randomd-regular graphs, Technical report, Princeton University, August 1988;Combinatorica,11 (4) (1991) 331–362.

    MATH  MathSciNet  Article  Google Scholar 

  12. [12]

    J. Friedman: Some graphs with small second eigenvalue. Technical report, Princeton University, October 1989;Combinatorica,15 (1) (1995), 31–42.

    MATH  MathSciNet  Google Scholar 

  13. [13]

    M. Hall:Combinatorial Theory, John Wiley & Sons, 2nd edition, 1986.

  14. [14]

    R. Impagliazzo, andD. Zuckerman: How to recycle random bits,FOCS, (1989), 248–253.

  15. [15]

    N. Katz: An estimate for character sums,J. AMS,2 (1989), 197–200.

    MATH  Google Scholar 

  16. [16]

    A. Lubotzky, R. Phillips, andP. Sarnak: Explicit expanders and the ramanujan conjectures, In18th Annual ACM Symposium on Theory of Computing, (1986), 240–246.

  17. [17]

    G. Margulis: Explicit group theoretic constructions of combinatorial schemes and their applications for construction of expanders and concentrators,J. of Problems of Information Transmission,24 (1988), 39–46.

    MATH  MathSciNet  Google Scholar 

  18. [18]

    N. Nisan, andA. Wigderson: Hardness vs. randomness,FOCS, (1988), 2–11.

  19. [19]

    Alain Robert:Introduction to the Representation Theory of Compact and Locally Compact Groups, Cambridge University Press, Cambridge, 1983.

    Google Scholar 

  20. [20]

    M. Santha: On using deterministic functions to reduce randomness in probabilistic algorithms, 1986: manuscript.

  21. [21]

    M. Sipser: Expanders randomness or time versus space,Structure and Complexity Theory, 1986.

  22. [22]

    M. Santha, andU. V. Vazirani: Generating quasi-random sequences from slightly random sources,FOCS, (1984), 434–440.

  23. [23]

    U. V. Varirani, andV. V. Vazirani: Random polynomial time is equal to slightly random polynomial time,FOCS, (1985), 417–428.

  24. [24]

    E. Wigner: Characteristic vectors of bordered matrices with infinite dimensions,Annals of Math.,63 (3) (1955), 548–564.

    MathSciNet  Article  Google Scholar 

  25. [25]

    D. Zuckerman: Simulating BPP using a general weak random source,FOCS, (1991), 79–89.

Download references

Author information

Affiliations

Authors

Additional information

The author wishes to acknowledge the National Science Foundation for supporting this research in part under Grant CCR-8858788, and the Office of Naval Research under Grant N00014-87-K-0467.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Friedman, J., Wigderson, A. On the second eigenvalue of hypergraphs. Combinatorica 15, 43–65 (1995). https://doi.org/10.1007/BF01294459

Download citation

Mathematics Subject Classification (1991)

  • 05 C 50
  • 05 C 65
  • 68 R 10