Skip to main content
Log in

Interaction between thermoelastic and scalar oscillation fields

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Three-dimensional mathematical problems of the interaction between thermoelastic and scalar oscillation fields in a general physically anisotropic case are studied by the boundary integral equation methods. Uniqueness and existence theorems are proved by the reduction of the original interface problems to equivalent systems of boundary pseudodifferential equations. In the non-resonance case the invertibility of the corresponding matrix pseudodifferential operators in appropriate functional spaces is shown on the basis of the generalized Sommerfeld-Kupradze type thermoradiation conditions for anisotropic bodies. In the resonance case the co-kernels of the pseudodifferential operators are analysed and the efficient conditions of solvability of the original interface problems are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bielak, J. and MacCamy, R.C.,Symmetric finite element and boundary integral coupling methods for fluid-solid interaction, Quart. Appl. Math.,49 (1991), 107–119.

    Google Scholar 

  2. Bielak, J., MacCamy, R.C. and Zeng X.,Stable coupling method for interface scattering problems, Research Report R-91-199, Dept. of Civil Engineering, Carnegie Mellon University, 1991.

  3. Brekhovskikh, L.M.,Waves in Layered Medium, Nauka, Moscow, 1973 (Russian).

    Google Scholar 

  4. Boström, A.,Scattering of stationary acoustic waves by an elastic obstacle immersed in a fluid. J. Acoust. Soc. Amer.,67(1980), 390–398.

    Google Scholar 

  5. Boström, A.Scattering of acoustic waves by a layered elastic obstacle in a fluid — a improved null field approach. J. Acoust. Soc. Amer.,76(1984), 588–593.

    Google Scholar 

  6. Colton, D. and Kress, R.,Integral Equation Methods in Scattering Theory. John Wiley, New York, 1983.

    Google Scholar 

  7. Ershov, N.E.,Solution of a three-dimensional diffraction problem of acoustic waves by potential method. In: Mathematical Problems of Geophysics. Novosibirsk, 1985, 47–58 (Russian).

  8. Ershov, N.E. and Smagin, S.I.,On Solving of a stationary diffraction problem by potential method. Soviet Doklady,311, 2(1990), 339–342 (Russian).

    Google Scholar 

  9. Everstine, G.C. and Au-Yang, M.K. eds.,Advances in Fluid-Structure Interaction — 1984, American Society of Mechanical Engineers New York, 1984.

    Google Scholar 

  10. Everstine, G.C. and Henderson, F.M.,Coupled finite element/boundary element approach for fluid-structure interaction. J. Acoust. Soc. Amer.,87(1990), 1938–1947.

    Google Scholar 

  11. Fichera, G.,Existence Theorems in Elasticity. Handb. der Physik, Bd. 6/2, Springer-Verlag, Heidelberg, 1973.

    Google Scholar 

  12. Goswami, P.P., Rudolphy, T.J., Rizzo, F.J. and Shippy, D.J.,A boundary element method for acoustic-elastic interaction with applications in ultrasonic NDE. J. Nondestruct. Eval.,9(1990), 101–112.

    Google Scholar 

  13. Hargé, T.,Valeurs propres d'un corps élastique, C.R. Acad. Sci. Paris, Sér. I Math.,311(1990), 857–859.

    Google Scholar 

  14. Hörmander, L.,The Analysis of Linear Partial Differential Operators, III, Pseudodifferential Operators, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.

    Google Scholar 

  15. Hsiao, G.C.,On the boundary-field equation methods for fluid-structure interactions. Proceedings of the 10.TMP, Teubner Texte zur Mathematik, Bd.134, Stuttgart-Leipzig, 1994, 79–88.

    Google Scholar 

  16. Hsiao, G.C., Kleinman, R.E. and Schuetz, L.S.,On variational formulation of boundary value problems for fluid-solid interactions, In: MacCarthy M.F. and Hayes M.A. (eds): Elastic Wave Propagation. IUTAM Symposium on Elastic Wave Propagation. North-Holland-Amsterdam, 1989, 321–326.

    Google Scholar 

  17. Jentsch, L. and Natroshvili, D.,Non-classical interface problems for piecewise homogeneous anistropic bodies, Math. Methods Appl. Sci.,18(1995), 27–49.

    Google Scholar 

  18. Jentsch, L. and Natroshvili, D.,Thermoelastic oscillations of anisotropic bodies. Preprint 96-1. Technische Universität Cheminitz-Zwickau, Fakultät für Mathematik, 1996. (See also ‘Proceedings of Sommerfeld'96 Workshop, Freudenstadt, Schwarzwald, 30 September–4 October, 1996’).

  19. Jentsch, L. and Natroshvili, D.,Interaction between thermoelastic and scalar oscillation fields (general anisotropic case). Preprint 97-5. Technische Universität Chemnitz-Zwickau, Fakultät für Mathematik, 1997.

  20. Jentsch, L., Natroshvili, D. and Wendland, W.,General transmission problems in the theory of elastic oscillations of anisotropic bodies. DFG-Schwerpunkt Randelementmethoden, Bericht Nr. 95-7, Stuttgart University, 1995. (To appear in ‘Journal of Math. Anal. and Applications’).

  21. Jones, D.S.,Low-frequency scattering by a body in lubricated contact. Quart. J. Mech. Appl. Math.,36(1983), 111–137.

    Google Scholar 

  22. Junger, M.C. and Fiet, D.,Sound, Structures and Their Interaction, MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  23. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O. and Burchuladze, T.V.,Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Nauka, Moscow, 1976 (Russian).

    Google Scholar 

  24. Luke, C.J. and Martin, P.A.,Fluid-solidinteraction: acoustic scattering by a smooth elastic obstacle. SIAM J. Appl. Math.,55, 4(1995), 904–922.

    Google Scholar 

  25. Mikhlin, S.G. and Prössdorf, S.,Singular Integral Operators, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  26. Miranda, C.,Partial Differential Equations of Elliptic Type, 2-nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1970.

    Google Scholar 

  27. Natroshvili, D.,Investigation of Boundary Value and Initial Boundary Value Problems of the Mathematical Theory of Elasticity and Thermoelasticity for Homogeneous Anisotropic Bodies by Potential Methods, Doct. Thesis, Tbilisi Math. Inst. of Acad. of Sci. Georgian SSR. Tbilisi, 1–325, 1984.

    Google Scholar 

  28. Natroshvili, D., Djagmaidze, A. and Svanadze, M.,Some Linear Problems of the Theory of Elastic Mixtures, Tbilisi University Press, Tbilisi, 1986.

    Google Scholar 

  29. Natroshvili, D.,Boundary integral equation method in the steady state oscillation problems for anisotropic bodies. Math. Methods Appl. Sci. (to appear)

  30. Natroshvili, D. and Sadunishvili, G.,Interaction of elastic and scalar fields. Math. Methods Appl. Sci.19, No.18(1996), 1445–1469.

    Google Scholar 

  31. Nowacki, W.,Dynamic Problems of Thermoelasticity. PWN-Polish Scientific Publishers, Warszawa, Poland, Nordhoff International Publishing, Leyden, The Nederlands, 1975.

    Google Scholar 

  32. Ohayon, R. and Sanchez-Palencia, E.,On the vibration problem for an elastic body surrounded by a slightly compressible fluid, RAIRO Anal. Numér.,17(1983), 311–326.

    Google Scholar 

  33. Sarchez Hubert, J. and Sanchez-Palencia, E.,Vibration and Coupling of Continuous Systems, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  34. Schneck, H.A.,Improved integral formulation for acoustic radiation problems, J. Acoust. Soc. Amer.,44(1968), 41–58.

    Google Scholar 

  35. [35]+Seybert, A.F., Wu, T.W. and Wu, X.F.,Radiation and scattering of acoustic waves from elastic solids and shells using the boundary element method. J. Acoust. Soc. Amer.,84(1988), 1906–1912.

    Google Scholar 

  36. Smagin, S.I.,Potential method in a three-dimensional problem of the diffraction electromagnetic waves, Journal of Computational Mathematics and Mathematical Physics,29, 1(1989), 82–92 (Russian).

    Google Scholar 

  37. Smagin, S.I.,On a new class of integral equations lowering dimensionality of diffraction problems. Soviet Doklady,316, 3(1991), 580–585 (Russian).

    Google Scholar 

  38. Vainberg, B.R.,The radiation, limiting absorption and limiting amplitude principles in the general theory of partial differential equations. Usp. Math. Nauk,21, 3(129)(1966), 115–194 (Russian).

    Google Scholar 

  39. Vekua, I.N.,On metaharmonic functions. Proc. Tbilisi Mathem. Inst. of Acad. Sci. Georgian SSR,12(1943), 105–174 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jentsch, L., Natroshvili, D. Interaction between thermoelastic and scalar oscillation fields. Integr equ oper theory 28, 261–288 (1997). https://doi.org/10.1007/BF01294154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01294154

1991 Mathematics Subject Classification

Navigation