Skip to main content
Log in

Form factors in the projected linear chiral sigma model

  • Hadron Physics
  • Published:
Zeitschrift für Physik A Atomic Nuclei

Abstract

Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass ofΛ=690 MeV. Electromagnetic form factors for the vertexγNΔ and the nucleon spin distribution are also evaluated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braaten, E., Tse, S.-M., Willcox, C.: Phys. Rev. D34, 1482 (1986)

    Google Scholar 

  2. Meissner, U.-G., Kaiser, N., Weise, W.: Nucl. Phys. A466, 685 (1987)

    Google Scholar 

  3. Machleidt, R., Holinde, K., Elster, Ch.: Phys. Rep.149, 1 (1987)

    Google Scholar 

  4. Cohen, Th.D.: Phys. Rev. D34, 2187 (1986)

    Google Scholar 

  5. Kaiser, N., Meissner, U.-G., Weise, W.: Phys. Lett.198B, 319 (1987)

    Google Scholar 

  6. Gell-Mann, M., Lévy, M.: Nuovo Cimento16, 705 (1960)

    Google Scholar 

  7. Birse, M.C., Banerjee, M.K.: Phys. Lett.136B, 284 (1984); Phys. Rev. D31, 118 (1985)

    Google Scholar 

  8. Kahana, S., Ripka, G., Soni, V.: Nucl. Phys. A415, 351 (1984)

    Google Scholar 

  9. Goeke, K., Urbano, J.N.: Phys. Lett.143B, 319 (1984); Phys. Rev. D32, 2396 (1985)

    Google Scholar 

  10. Golli, B., Rosina, M.: Phys. Lett165B, 347 (1985)

    Google Scholar 

  11. Birse, M.C.: Phys. Rev. D33, 1934 (1986)

    Google Scholar 

  12. Fiolhais, M., Nippe, A., Goeke, K., Grümmer, F., Urbano, J.N.: Phys. Lett.194B, 187 (1987)

    Google Scholar 

  13. Fiolhais, M., Goeke, K., Grümmer, F., Urbano, J.N.: Nucl. Phys. A481, 727 (1988)

    Google Scholar 

  14. Lübeck, E.G., Birse, M.C., Henley, E.M., Wilets, L.: Phys. Rev. D33, 234 (1986)

    Google Scholar 

  15. Alberto, P., Ruiz Arriola, E., Fiolhais, M., Grümmer, F., Urbano, J.N., Goeke, K.: Phys. Lett.208B, 75 (1988)

    Google Scholar 

  16. Cohen, Th.D., Broniowski, W.: Phys. Rev. D34, 3472 (1986)

    Google Scholar 

  17. Bernstein, J.: Elementary particles and their currents. San Francisco: W.H. Freeman 1968

    Google Scholar 

  18. Bjorken, J.D., Drell, S.D.: Relativistic quantum mechanics. New York: McGraw-Hill 1965

    Google Scholar 

  19. Betz, M., Goldflam, R.: Phys. Rev. D28, 2848 (1983)

    Google Scholar 

  20. Goeke, K., Faessler, A., Wolter, H.H.: Nucl. Phys. A183, 352 (1972)

    Google Scholar 

  21. Fiolhais, M.: Ph.D. thesis, University of Coimbra (1988) (unpublished)

  22. Esbensen, H., Lee, T.-S.: Phys. Rev. C32, 1966 (1985)

    Google Scholar 

  23. Jones, H.F., Scadron, M.D.: Ann. Phys. (N.Y.)81, 1 (1973)

    Google Scholar 

  24. Ash, W.W., Berkelman, K., Lichtenstein, C.A., Ramanauskas, A., Siemann, R.H.: Phys. Lett.24B, 165 (1967)

    Google Scholar 

  25. Davidson, R., Mukhopadhyay, N.C., Wittman, R.: Phys. Rev. Lett.56, 804 (1986)

    Google Scholar 

  26. Hosaka, A., Toki, H.: Phys. Lett.188B, 301 (1987);

    Google Scholar 

  27. Hosaka, A.: Prog. Theor. Phys.78, 585 (1987);

    Google Scholar 

  28. Hosaka, A., Toki, H.: Phys. Rev. C37, 2236 (1988)

    Google Scholar 

  29. Schütte, D., Tillemans, A.: Phys. Lett. B206, 1 (1986)

    Google Scholar 

  30. Amaldi, E. et al.: Phys. Lett.41B, 216 (1972);

    Google Scholar 

  31. Brauel, P. et al.: Phys. Lett.45B, 389 (1973);

    Google Scholar 

  32. Del Guerra, A. et al.: Nucl. Phys. B107, 65 (1976)

    Google Scholar 

  33. Höhler, G. et al.: Nucl. Phys. B114, 505 (1976);

    Google Scholar 

  34. Simon, G.G. et al.: Z. Naturforsch.35a, 1 (1980)

    Google Scholar 

  35. Galster, S. et al.: Nucl. Phys. B32, 221 (1971)

    Google Scholar 

  36. Meissner, U.G. et al.: Phys. Rev. D39, 1956 (1989)

    Google Scholar 

  37. Durso, J.W., Saarela, M., Brown, G.E., Jackson, A.D.: Nucl. Phys. A278, 445 (1977);

    Google Scholar 

  38. Durso, J.W., Jackson, A.D., Verwest, B.J.: Nucl. Phys. A282, 404 (1977)

    Google Scholar 

  39. Meissner, Th., Ruiz Arriola, E., Gruemmer, F., Mavromatis, H., Goeke, K.: Phys. Lett. B214, 312 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work has been supported by the JNICT, Lisboa, by the Bundesministerium für Forschung und Technologie, Bonn (Int. Büro and contract N° 06-BO-702) and by the KFA Jülich (COSY-Project).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberto, P., Arriola, E.R., Fiolhais, M. et al. Form factors in the projected linear chiral sigma model. Z. Physik A - Atomic Nuclei 336, 449–460 (1990). https://doi.org/10.1007/BF01294118

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01294118

PACS

Navigation