Skip to main content
Log in

A nonperturbative solution to the Dyson-Schwinger equations of QCD

I. Nonperturbative vertices and a mechanism for their self consistency

  • Hadron Physics
  • Published:
Zeitschrift für Physik A Atomic Nuclei

Abstract

This is the first of two papers in which we discuss a nonperturbatively modified solution to the Euclidean Dyson-Schwinger equations for the 7 superficially divergent proper verticesΓ of QCD. It takes the formΣ n g 2n Γ(n) where eachΓ(n) approaches its perturbative form at large momenta. At lower momenta, it differs from that form by an additional non-analyticg 2 dependence through a dynamical mass scaleb, proportional toΛ qcd and associated with a pole dependence on the momentum invariants. In the zeroth-order two-point functions, these nonperturbative modifications amount to a generalized Schwinger mechanism, leading to propagators without particle poles. The termsΓ(0), representing the Feynman rules of the modified iterative solution, can become self-consistent in the DS equations through a mechanism of “nonperturbative logarithms” which we explain. The mechanism is tied to the presence of divergent loops, and thus represents a pure quantum effect, similar to quantum anomalies. It restricts formation of nonperturbativeΓ(0)'s to the 7 primitively divergent vertices, thus escaping the infinite nature of the DS hierarchy. In a given loop order, the self-consistency problem reduces to a finite set of algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Häbel, U., Könning, R., Reusch, H.G., Stingl, M., Wigard, S.: Z. Phys. A — Atomic Nuclei336, 435 (1990)

    Google Scholar 

  2. Dyson, F.J.: Phys. Rev.75, 1736 (1949); Schwinger, J.: Proc. Natl. Acad. Sci.37, 452, 455 (1951)

    Google Scholar 

  3. Eichten, E.J., Feinberg, F.L.: Phys. Rev. D10, 3254 (1974)

    Google Scholar 

  4. Gross, D.J., Neveu, A.: Phys. Rev. D10, 3235 (1974); Callan, C.G., Dashen, R.F., Gross, D.J.: Phys. Rev. D17, (2717) (1978)

    Google Scholar 

  5. Mandelstam, S.: Phys. Rev. D20, 3223 (1979)

    Google Scholar 

  6. Baker, M., Ball, J.S., Zachariasen, F.: Nucl. Phys. B186, 531, 560 (1981)

    Google Scholar 

  7. Atkinson, D., et al.: J. Math. Phys.22, 2704 (1981); ibid.23, (1917) (1982)

    Google Scholar 

  8. Arbuzov, B.A.: Sov. J. Part. Nucl.19, 1 (1988), and earlier work of the Serpukhov group quoted there

    Google Scholar 

  9. Taylor, J.C.: Nucl. Phys. B33, 436 (1971); Slavnov, A.A.: Theor. Math. Phys.10, 99 (1972)

    Google Scholar 

  10. Schwinger, J.: Phys. Rev.125, 397 (1962)

    Google Scholar 

  11. Ball, J.S., Chiu, T.-W.: Phys. Rev. D22, 2550 (1980)

    Google Scholar 

  12. Pascual, P., Tarrach, R.: Nucl. Phys. B174, 123 (1980); Kim, S.K., Pac, P.Y.: J. Korean Phys. Soc.14, 83 (1981)

    Google Scholar 

  13. Stingl, M.: Phys. Rev. D34, 3863 (1986); Erratum ibid. D36, 651 (1987). — The 3-gluon vertex ansatz used there, whose self-consistency was not studied, is unnecessarily general and is superseded by (2.18)-(2.25) of the present paper

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häbel, U., Könning, R., Reusch, H.G. et al. A nonperturbative solution to the Dyson-Schwinger equations of QCD. Z. Physik A - Atomic Nuclei 336, 423–433 (1990). https://doi.org/10.1007/BF01294116

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01294116

PACS

Navigation