Skip to main content
Log in

Tertiary structure and function of transfer-RNA

  • Published:
Biophysik Aims and scope Submit manuscript

Summary

In analogy to the globular protein structures the predominant stabilization factor of which is surface energy a compact model with the smallest possible surface of the tertiary structure of t-RNA is suggested. The principle of folding is — according to the clover leaf model — the superposition of the three leaves. The three loops form a ring (loop-stack). The stem can be placed on this molecular body bringing the CCA end into the vicinity of the loop-stack, where the CCA end can be bound. The structures of the RNA chain are subordinated to this globular structural principle. Under the influence of the

sequence the CCA end is able to undergo structural changes, thus allowing to explain the role of t-RNA in the aminoacylation process and the structural differences between t-RNA, aminoacyl-t-RNA, and peptidyl-t-RNA. Furthermore it is possible to comment on the existence of the characteristic and modified bases, the role of magnesium ions and the chemical reactions of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abelson, J., Barnett, L., Brenner, S., Gefter, M. L., Landy, A., Russel, R., Smith, J. D.: Mutant tyrosine transfer ribonucleic acids. FEBS-Letters3, 1 (1969).

    Google Scholar 

  2. Abelson, J., Gefter, M. L., Barnett, L., Landy, A., Russel, R. L., Smith, J. D.: Mutant tyrosine transfer ribonucleic acids. J. molec. Biol.47, 15 (1970).

    Google Scholar 

  3. Abraham, D. J.: Proposed detailed structural model for t-RNA and its geometric relationship to a Messenger. J. theor. Biol.30, 83 (1971).

    Google Scholar 

  4. Adams, A., Lindahl, T., Fresco, J. R.: Conformational differences between the biologically active and inactive forms of a transfer ribonucleic acid. Proc. nat. Acad. Sci. (Wash.)57, 1684 (1967).

    Google Scholar 

  5. Andrews, L. J.: Aromatic molecular complexes of the electron donor-acceptor type. J. chem. Revs.54, 713 (1954).

    Google Scholar 

  6. Armstrong, A., Hagopian, H., Ingram, V. M., Wagner, E. K.: Chemical studies on amino acid acceptor ribonucleic acids. VII. Partial ribonuclease digestion of alanine and valine soluble ribonucleic acid from yeast. Biochemistry5, 3027 (1966).

    Google Scholar 

  7. Armstrong, A., Burrows, W. J., Skoog, F., Roy, K. L., Söll, D.: Cytokinins: distribution in transfer RNA species ofEscherichia coli. Proc. nat. Acad. Sci. (Wash.)63, 834 (1969).

    Google Scholar 

  8. Baguley, B. C., Wehrli, W., Staehelin, M.: In vitro methylation of yeast serine transfer ribonucleic acid. Biochemistry7, 1645 (1970).

    Google Scholar 

  9. Basilia, M. R., Saier, E. T., Cousins, L. R.: Aromatic molecules as hydrogen-bonding bases. An investigation of the interaction between an aliphatic alcohol and a series of alkylbenzenes. J. Amer. chem. Soc.87, 1665 (1965).

    Google Scholar 

  10. Beardsley, K., Cantor, C. R.: Studies of transfer RNA tertiary structure by singletsinglet energy transfer. Proc. nat. Acad. Sci. (Wash.)65, 39 (1970).

    Google Scholar 

  11. Beardsley, K., Tao, T., Cantor, C. R.: On the conformation of the anticodon loop of phenylalanine transfer ribonucleic acid. Effect of environment on the fluorescence of the Y base. Biochemistry9, 3524 (1970).

    Google Scholar 

  12. Beltchev, B., Thang, M. N., Portier, C.: Phosphorolysis of t-RNA. Conformations of specific t-RNA's and effect of the localized regions on the stability of the structure. Europ. J. Biochem.19, 194 (1971).

    Google Scholar 

  13. Brostoff, S. W., Ingram, V. M.: Chemical modification of yeast alanine transfer ribonucleic acid with a radioactive carbodiimide. Biochemistry9, 2372 (1970).

    Google Scholar 

  14. Cantor, C. R., Jaskunas, S. R., Tinoco, I.: Optical properties of ribonucleic acid predicted from oligomers. J. molec. Biol.20, 39 (1966).

    Google Scholar 

  15. Carbon, J., Curry, J. B.: Genetically and chemically derived missense suppressor transfer RNA's with altered enzymic aminoacylation rates. J. molec. Biol.38, 201 (1968).

    Google Scholar 

  16. Cerutti, P., Miles, H. T., Frazier, J.: Interaction of partially reduced polyuridylic acid with polyadenylic acid. Biochem. biophys. Res. Commun.22, 465 (1966).

    Google Scholar 

  17. Cerutti, P.: The effect of the selective reduction of yeast transfer ribonucleic acid with sodium borohydride on the acceptance of valine and serine. Biochem. biophys. Res. Commun.30, 434 (1968).

    Google Scholar 

  18. Chirikdjian, J. G., Davis, F. F.: Compositional variations in the common pentanucleotide from transfer ribonucleic acids ofEscherichia coli. J. biol. Chem.245, 1296 (1970).

    Google Scholar 

  19. Connors, P. G., Labanauskas, M., Beeman, W. W.: Structural studies on transfer RNA.: The molecular conformation in solution. Science166, 1528 (1969).

    Google Scholar 

  20. Cramer, F.: Three-dimensional structure of t-RNA. Progr. nucl. acid. Res.11, 391 (1971).

    Google Scholar 

  21. Cramer, F., Doepner, H., Haar, F. v. d., Schlimme, E., Seidel, H.: On the conformation of transfer RNA. Proc. nat. Acad. Sci. (Wash.)61, 1384 (1969).

    Google Scholar 

  22. Creswell, C. J., Allred, A. L.: Thermodynamic constants for hydrogen bond formation in the chloroform-benzene-cyclohexane system. J. phys. Chem.66, 1469 (1962).

    Google Scholar 

  23. Danchin, A.: A dynamic molecular model for transfer RNA. FEBS-Letters13, 152 (1971).

    Google Scholar 

  24. Danchin, A.: Personal communication.

  25. Danchin, A., Grunberg-Manago, M.: Reversible inactivation of phenylalanine acceptor activity of yeast t-RNAPhe by sodium borohydride. Biochem. biophys. Res. Commun.39, 683 (1970).

    Google Scholar 

  26. Danchin, A., Grunberg-Manago, M.: Differences in binding of oligo C to uncharged and charged t-NRA. FEBS-Letters9, 327 (1970).

    Google Scholar 

  27. Danchin, A., Gueron, M.: Proton magnetic relaxation study of the manganese-transfer-RNA complex. J. chem. Phys.53, 3599 (1970).

    Google Scholar 

  28. Doctor, B. P., Fuller, W., Webb, N. L. W.: Arrangement of the helical regions inE. coli tyrosine t-RNA. Nature (Lond.)221, 58 (1969).

    Google Scholar 

  29. Dube, S. K., Rudland, P. S., Clark, B. F. C., Marcker, K. A.: A structural requirement for codon-anticodon interaction on the ribosome. Cold Spr. Harb. Symp. quant. Biol.34, 161 (1969).

    Google Scholar 

  30. Dudock, B. S., DiPeri, C., Michael, M. S.: On the nature of the yeast phenylalanine transfer ribonucleic acid synthetase recognition site. J. biol. Chem.245, 2456 (1970).

    Google Scholar 

  31. Favre, A., Yaniv, M., Michelson, A. M.: The photochemistry of 4-thiouridine inEscherischia coli t-RNAI Val. Biochem. biophys. Res. Commun.37, 266 (1969).

    Google Scholar 

  32. Felsenfeld, G., Huang, S.: Some effects of charge and structure upon ionic interactions of nucleic acids. Biochim. biophys. Acta (Amst.)51, 19 (1961).

    Google Scholar 

  33. Findlay, T. J. V., Keniry, J. S., Kidman, A. D., Pickles, V. A.: Calorimetric and NMR studies of hydrogen bonding involving C-H bonds. 1. Chloroform and pyridine. Trans. Faraday Soc.63, 846 (1967).

    Google Scholar 

  34. Pittler, P., Hall, R. H.: Selective modification of yeast seryl-t-RNA and its effect on the acceptance and binding functions. Biochem. biophys. Res. Commun.25, 411 (1966).

    Google Scholar 

  35. Fresco, J. R., Blake, R. D., Langridge, R.: Crystallization of transfer ribonucleic acids from unfractionated mixtures. Nature (Lond.)220, 1285 (1968).

    Google Scholar 

  36. Fuller, W., Hutchinson, F., Spencer, M., Wilkins, M. H. F.: Molecular and crystal structures of double-helical RNA. I. An X-ray diffraction study of fragmented yeast RNA and a preliminary double-helical RNA Model. J. molec. Biol.27, 507 (1967).

    Google Scholar 

  37. Grunberg-Manago, M., Cohn, M., Thang, M. N., Beltchev, B., Danchin, A., Dimitrijevic, L.: Influence of the structure of transfer RNA on its interaction with enzymes and divalent cations. In: Structure and function of transfer RNA and 5sRNA, p. 113. Oslo: Universitetsforlaget 1968.

    Google Scholar 

  38. Hampel, A., Bock, R.: General procedure for crystallization of transfer ribonucleic acid. Biochemistry9, 1873 (1970).

    Google Scholar 

  39. Hartmann, H., Strehl, F.: To be published in Theor. Chim. Acta (1972).

  40. Hecht, S. M., Leonard, N. J., Burrows, W. J., Armstrong, D. J., Skoog, F., Occolowitz, J.: Cytokinin of wheat germ transfer RNA: 6-(4-Hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine. Science166, 1272 (1969).

    Google Scholar 

  41. Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merill, S. H., Penswick, J. R., Zamir, A.: Structure of a ribonucleic acid. Science147, 1462 (1965).

    Google Scholar 

  42. Holt, C. E., Joel, P. B., Herbert, E.: Turnover of terminal nucleotides of soluble ribonucleic acid in intact reticulocytes. J. biol. Chem.241, 1819 (1966).

    Google Scholar 

  43. Igo-Kemenes, T., Zachau, H. G.: On the specificity of the reduction of transfer ribonucleic acids with sodium borohydride. Europ. J. Biochem.10, 549 (1969).

    Google Scholar 

  44. Imura, N., Weiss, G. B., Chambers, R. W.: Reconstitution of alanine acceptor activity from fragments of yeast t-RNAII Ala. Nature (Lond.)222, 1147 (1969).

    Google Scholar 

  45. Jilyaeva, T. I., Kisselev, L. L.: Exposed cytosine residues in the t-RNAI Val from yeast. FEBS-Letters10, 229 (1970).

    Google Scholar 

  46. Kaji, H., Tanaka, Y.: Sedimentation behavior of t-RNA and aminoacyl-t-RNA. Biochem. biophys. Acta (Amst.)138, 642 (1967).

    Google Scholar 

  47. Kline, L. K., Fittler, F., Hall, R. H.: N6-(Δ 2-Isopentenyl) adenosine. Biosynthesis in transfer ribonucleic acid in vitro. Biochemistry8, 4361 (1969).

    Google Scholar 

  48. Koltun, W. L.: Precision space-filling atomic models. Biopolymers3, 665 (1965).

    Google Scholar 

  49. Lake, J. A., Beeman, W. W.: On the conformation of yeast transfer RNA. J. molec. Biol.31, 115 (1968).

    Google Scholar 

  50. Levitt, M.: Detailed molecular model for transfer ribonucleic acid. Nature (Lond.)224, 759 (1969).

    Google Scholar 

  51. Lichter, R. L., Roberts, J. D.: Carbon-13 nuclear magnetic resonance spectroscopy. Solvent effects on chemical shifts. J. phys. Chem.74, 912 (1970).

    Google Scholar 

  52. Lindahl, T., Adams, A., Geroch, M., Fresco, J. R.: Selective recognition of the native conformation of transfer ribonucleic acids by enzymes. Proc. nat. Acad. Sci. (Wash.)57, 178 (1967).

    Google Scholar 

  53. Lipsett, M. N.: Complex formation between polycytidylic acid and guanine oligonucleotides. J. biol. Chem.239, 1256 (1964).

    Google Scholar 

  54. Lipsett, M. N.: Disulfide bonds in sRNA. Cold Spr. Harb. Symp. quant. Biol.31, 449 (1966).

    Google Scholar 

  55. Litt, M.: Structural studies on transfer ribonucleic acid. I. Labeling of exposed guanine sites in yeast phenylalanine transfer ribonucleic acid with kethoxal. Biochemistry8, 3249 (1969).

    Google Scholar 

  56. Lovinger, G. G., Roberts, R. J., Strominger, J. L.:Staphylococcus epidermidis t-RNAI Gly. Fed. Proc.30, 1217 (1971).

    Google Scholar 

  57. Macon, J. B., Wolfenden, R.: 1-Methyladenosine Dimroth rearrangement and reversible reduction. Biochemistry7, 3453 (1968).

    Google Scholar 

  58. May, M. S., Holley, R. W.: Alanine acceptance and transfer by nitrous acid-modified yeast alanine transfer ribonucleic acid. J. molec. Biol.52, 19 (1970).

    Google Scholar 

  59. McDonald, C. C., Phillips, W. D., Penswick, J.: NMR study of the secondary structure of s-RNA. Biopolymers3, 609 (1965).

    Google Scholar 

  60. Melcher, G.: On the tertiary structure of transfer ribonucleic acid. FEBS-Letters3, 185 (1969).

    Google Scholar 

  61. Melcher, G.: The stabilisation of nucleic acid structures. Biophysik7, 29 (1970).

    Google Scholar 

  62. Melcher, G.: A new hypothesis on the evolution of the genetic code. Biophysik7, 25 (1970).

    Google Scholar 

  63. Melcher, G.: Model of protein biosynthesis. Submitted to J. Theoret. Biol.

  64. Melcher, G., Paulin, D., Guschlbauer, W.: Circular dichroism of transfer ribonucleic acid. Biochimie53, 43 (1971).

    Google Scholar 

  65. Michelson, A. M., Monny, C.: Polynucleotides. X. Oligonucleotides and their association with polynucleotides. Biochim. biophys. Acta (Amst.)149, 107 (1967).

    Google Scholar 

  66. Millar, D. B.: Tertiary structure determinants in transfer RNA. I. Pseudouridine. Biochim. biophys. Acta (Amst.)174, 32 (1969).

    Google Scholar 

  67. Mirzabekov, A. D., Kazarinova, L. Ya., Lastity, D., Baev, A. A.: Enzymatic aminoacylation of dissected molecules of Baker's yeast valine tRNA. FEBS-Letters3, 268 (1969).

    Google Scholar 

  68. Molinaro, M., Sheiner, L. B., Neelon, F. A., Cantoni, G. L.: Effect of the chemical modification of dihydrouridine in yeast transfer ribonucleic acid on amino acid acceptor activity and ribosomal binding. J. biol. Chem.243, 1277 (1968).

    Google Scholar 

  69. Muench, K. H.: Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Conformational changes in tryptophanyl and tryptophan transfer ribonucleic acids. Biochemistry8, 4880 (1969).

    Google Scholar 

  70. Ninio, J., Favre, A., Yaniv, M.: Molecular model for transfer RNA. Nature (Lond.)223, 1333 (1969).

    Google Scholar 

  71. Nishimura, S., Harada, F., Narushima, U., Seno, T.: Purification of methionine-, valine-, phenylalanine-, and tyrosine-specific t-RNA fromEscherichia coli. Biochim. biophys. Acta (Amst.)142, 133 (1967).

    Google Scholar 

  72. Nishimura, S., Harada, F., Hirabayashi, M.: Nature of magnesium-induced miscoding. The in vitro synthesis of valine-tyrosine copolypeptide directed by poly (U-G). J. molec. Biol.40, 173 (1969).

    Google Scholar 

  73. Penswick, J. R., Holley, R. W.: Specific cleavage of the yeast alanine RNA into two large fragments. Proc. nat. Acad. Sci. (Wash.)53, 543 (1965).

    Google Scholar 

  74. Petermann, M. L., Pavlovec, A.: Effects of magnesium and formaldehyde on the sedimentation behaviour of rat liver ribosomes. Biopolymers7, 73 (1969).

    Google Scholar 

  75. Pilz, I., Kratky, O., Haar, F. v. d., Cramer, F.: Influence of counterions on the radius of gyration of phenylalanine specific transfer RNA as determined by small angle X-ray scattering. Europ. J. Biochem.18, 436 (1971).

    Google Scholar 

  76. Pochon, F., Balny, C., Scheit, K. H., Michelson, A. M.: Photochimie des polynucléotides. V. Etudes sur des polymères contenant de la 4 thio-uridine. Biochim. biophys. Acta (Amst.)228, 49 (1971).

    Google Scholar 

  77. Putnam, F. W.: In: The proteins I, B., p. 807. (Neurath, H., Bailey, K., Ed.). New York: Academic Press 1953.

    Google Scholar 

  78. Rake, A. V., Tener, G. M.: Effect of cyanoethylation of yeast transfer ribonucleic acid on its amino acid acceptor activity. Biochemistry5, 3992 (1966).

    Google Scholar 

  79. Reid, B. R.: Selective inactivation ofE. coli tRNA by ethylenimine. Biochem. biophys. Res. Commun.33, 627 (1968).

    Google Scholar 

  80. Rether, B., Gangloff, J., Ebel, J. P.: Properties of tRNA nucleotidyltransferase from Baker's yeast. Symp. of the Société de Chimie Biologique, Strasbourg, Dez. 9–11 (1971).

  81. Römer, R., Riesner, D., Coutts, S. M., Maass, G.: The coupling of conformational transitions in alanine specific transfer ribonucleic acid from yeast studied by a modified differential absorption technique. Europ. J. Biochem.15, 77 (1970).

    Google Scholar 

  82. Römer, R., Riesner, D., Maass, G.: Resolution of five conformational transitions in phenylalanine specific tRNA from yeast. FEBS-Letters10, 352 (1970).

    Google Scholar 

  83. Sarin, P. S., Zamecnik, P. C.: Conformational differences between s-RNA and aminoacyls-RNA. Biochem. biophys. Res. Commun.20, 400 (1965).

    Google Scholar 

  84. Schäfer, K., Lax, E., In: Landolt-Börnstein. Eigenschaften der Materie in ihren Aggregatzuständen, II/3, 6. Aufl. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  85. Schulman, L.-D. H.: Structure and function ofE. coli formylmethionyl t-RNA.I. Effect of modification of pyrimidine residues on aminoacyl synthetase recognition. Proc. nat. Acad. Sci. (Wash.)66, 507 (1970).

    Google Scholar 

  86. Seno, T., Kobayashi, M., Nishimura, S.: Purification ofEscherichia coli methionine t-RNAMet and methionine t-RNAf.Met and studies on their biophysical and biochemical properties. Biochim. biophys. Acta (Amst.)169, 80 (1968).

    Google Scholar 

  87. Siddiqui, M. A. Q., Krauskopf, M., Ofengand, J.: The function of pseudouridylic acid in transfer RNA. III. Inactivation of formylmethionine transfer RNA ofE. coli by cyanoethylation with acrylonitrile. Biochem. biophys. Res. Commun.38, 156 (1970).

    Google Scholar 

  88. Singhal, R. P.: Modification ofE. coli glutamate transfer RNA with bisulfite. J. biol. Chem.246, 5848 (1971).

    Google Scholar 

  89. Stern, R., Zutra, L. E., Littauer, U. Z.: Fractionation of transfer ribonucleic acid on a methylated albumin-silic acid column. II. Changes in elution profiles following modifications of transfer ribonucleic acid. Biochemistry8, 313 (1969).

    Google Scholar 

  90. Symposium of the Société de Chimie Biologique. Transfer ribonucleic acids: structure, biosynthesis and functions. Strasbourg, Dezember 9–11 (1971).

  91. Tao, T., Nelson, J., Cantor, C. R.: Conformational studies on transfer ribonucleic acid. Fluorescence lifetime and nanosecond depolarization. Measurements on bound ethidium bromide. Biochemistry9, 3514 (1970).

    Google Scholar 

  92. Thang, M. N., Guschlbauer, W., Zachau, H. G., Grunberg-Manago, M.: Degradation of transfer ribonucleic acid by polynucleotide phosphorylase. I. Mechanism of phosphorolysis and structure of t-RNA. J. molec. Biol.26, 403 (1967).

    Google Scholar 

  93. Thang, M. N., Beltchev, B., Grunberg-Manago, M.: Phosphorolysis of t-RNA. Multiple conformational states of t-RNA in solution. Europ. J. Biochem.19, 184 (1971).

    Google Scholar 

  94. Thiebe, R., Zachau, H. G.: A specific modification next to the anticodon of phenylalanine transfer ribonucleic acid. Europ. J. Biochem.5, 546 (1968).

    Google Scholar 

  95. Uhlenbeck, O. C., Baller, J., Doty, P.: Complementary oligonucleotide binding to the anticodon loop of f-met-transfer RNA. Nature (Lond.)225, 508 (1970).

    Google Scholar 

  96. Uretsky, S. C., Acs, G., Reich, E., Mori, M., Altwerger, L.: Pyrrolopyrimidine nucleotides and protein synthesis. J. biol. Chem.243, 306 (1968).

    Google Scholar 

  97. Vold, B. S., Clinton, G. M., Spizizen, J.: An effect of temperature on thebacillus subtilis transfer RNA's which respond to codons beginning with U and A. Correlation with cytokinin activity. Biochim. biophys. Acta (Amst.)209, 396 (1970).

    Google Scholar 

  98. Ward, J. D., Reich, E.: Conformational properties of polyformycin: A polyribonucleotide with individual residues in thesyn conformation. Proc. nat. Acad. Sci. (Wash.)61, 1494 (1968).

    Google Scholar 

  99. Watson, J. D.: The synthesis of proteins upon ribosomes. Bull. Soc. chim. biol. (Paris)46, 1399 (1964).

    Google Scholar 

  100. Wau, L. S. C., Poon, P. K. C.: Effect of salts on the surface/interfacial tension and critical micelle concentration of surfactants. J. pharm. Sci.58, 1562 (1969).

    Google Scholar 

  101. Weinstein. I. B., Finkelstein, I. H.: Proflavine Inhibition of protein synthesis. J. biol. Chem.242, 3757 (1967).

    Google Scholar 

  102. Woese, C.: Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature (Lond.)226, 817 (1970).

    Google Scholar 

  103. Yanif, M., Favre, A., Barrel, B. G.: Structure of transfer RNA. Evidence for interaction between two non-adjacent nucleotide residues in t-RNAI Val fromEscherichia coli. Nature (Lond.)223, 1331 (1969).

    Google Scholar 

  104. Yoshida, M., Furuichi, Y., Kaziro, Y., Ukita, T.: The modification of nucleosides and nucleotides. IX. Inactivation of coding response of yeast tRNA containing inosine residue by cyanoethylation. Biochim. biophys. Acta (Amst.)166, 636 (1968).

    Google Scholar 

  105. Yoshida, M., Kaziro, Y., Ukita, T.: The modification of nucleosides and nucleotides. X. Evidence for the important role of inosine residue in codon recognition of yeast alanine tRNA. Biochim. biophys. Acta (Amst.)166, 646 (1968).

    Google Scholar 

  106. Young, Y. D., Bock, R. M., Nishimura, S., Ishikura, H., Yamada, Y., RajBhandary, U. L., Labanauskas, M., Connors, P. G.: Structural studies on transfer RNA: crystallization of formylmethionine and leucine transfer RNA's. Science166, 1527 (1969).

    Google Scholar 

  107. Zachau, H. G., Dütting, D., Feldmann, H., Melchers, F., Karau, W.: Serine specific transfer ribonucleic acids. XIV. Comparison of nucleotide sequences and secondary structure models. Cold Spr. Harb. Symp. quant. Biol.31, 417 (1966).

    Google Scholar 

  108. Zachau, H. G.: In: Structure and function of transfer RNA and 5s RNA, p. 169. Oslo: Universitetsforlaget 1968.

    Google Scholar 

  109. Zubay, G., Takanami, M.: Observations on the configuration of nucleotides near the 3′-hydroxy end of adapter RNA. Biochem. biophys. Res. Commun.15, 207 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I am particularly greatful to Dr. P. Fromageot, Dr. W. Guschlbauer (Saclay), Prof. Dr. R. Brunner, and Dr. M. Röhr (Vienna) for helpful discussions. Dr. J. Catlin helped me in the preparation of this paper. I was supported in this work by a Joliot-Curie fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melcher, G. Tertiary structure and function of transfer-RNA. Biophysik 9, 13–38 (1972). https://doi.org/10.1007/BF01293478

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01293478

Keywords

Navigation