Skip to main content
Log in

Ultrastructural evidence for uptake of silicon-containing silicic acid analogs byUrtica pilulifera and incorporation into cell wall silica

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

In natural environments the stinging nettle plant,Urtica pilulifera, bears stinging cells in which electron dense silica deposits occupy a significant volume of the cell wall. Plants were grown in hydroponic solutions with and without supplements of silicic acid, the chemical form of silicon available to biological systems to determine if this plant and the stinging cells will grow normally under conditions of silicon starvation. In separate experiments, several analogs of silicic acid were added as supplements to the hydroponic solution to determine whether silicic acid binding sites had detectably different specificities for the different molecular structures of the analogs. The analogs [(R-)nSi(-OH)m] have the following structures (R, n, m): (1)-H, 1, 3; (2)-CH3, 1, 3; (3)-CH3, 2, 2; (4)-CH3, 3, 1; (5)-CH2CH3, 1, 3; and (6)-C6H5, 1, 3. Electron microscopy was used as an assay for the uptake and incorporation of analogs into an electron dense silica-like product in the stinging cell wall. The results indicate that cell wall silica production occurred only when the analog contained at least three hydroxyl groups. The morphology and ontogeny of the plant was normal except for: 1, the appearance of green spots on the leaves when the analog contained two or more hydroxyl groups, and 2, total blockage of flowering by the two methyl derivative of silicic acid, (CH3)2Si(OH)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azam, F., 1974: Silicic acid uptake in diatoms studied with [68Ge] germanic acid as tracer. Planta121, 205–212.

    Google Scholar 

  • —,Volcani, B. E., 1974: Role in diatom metabolism. VI. Active transport of germanic acid in the heterotrophic diatomNitzschia alba. Arch. Mikrobiol.101, 1–8.

    Google Scholar 

  • —,Hemmingsen, B. B., Volcani, B. E., 1973: Germanium incorporation into the silica of diatom cell walls. Arch. Mikrobiol.92, 11–20.

    Google Scholar 

  • Azam, F., Hemmingsen, B. B., Volcani, B. E., 1974: Role of silicon in diatom metabolism. V. Silicic acid transport and metabolism in the heterotrophic diatomNitzschia alba. Arch. Mikrobiol.97, 103–114.

    Google Scholar 

  • Carlisle, E. M., 1970: Silicon: a possible factor in bone calcification. Science167, 279–280.

    Google Scholar 

  • —, 1974: Silicon as an essential element. Fed. Proc.33, 1758–1766.

    Google Scholar 

  • Chen, C., Lewin, J., 1969: Silicon as a nutrient element forEquisetum arvense. Canad. J. Bot.47, 125–131.

    Google Scholar 

  • Darley, W. M., 1974: Silicification and calcification. Chapter 24. In: Algal physiology and biochemistry. (Stewart, W. D. P., ed.), pp. 655–675. Berkeley: U. Cal. Press.

    Google Scholar 

  • Drum, R. W., 1968: Electron microscopy of siliceous spicules from the freshwater spongeHetromyenia. J. Ultrastruct. Res.22, 12–21.

    Google Scholar 

  • Elvin, D. W., 1972: Effect of germanium upon development of siliceous spicules of some fresh-water sponges. Exp. Cell Res.72, 551–553.

    Google Scholar 

  • Jones, L. H. P., Handreck, K. A., 1967: Silica in soils, plants, and animals. Adv. Agron.19, 107–149.

    Google Scholar 

  • King, E. J., Belt, H., 1938: The physiological and pathological aspects of silica. Physiol. Rev.18, 329–365.

    Google Scholar 

  • Krauskopf, K. B., 1956: Dissolution and precipitation of silica at low temperatures. Geochim. cosmochim. Acta10, 1–26.

    Google Scholar 

  • Leasure, J. K., Speier, J. L., 1966: Some herbicidal silicon compounds. J. med. Chem.9, 949–952.

    Google Scholar 

  • Lewin, J. C., 1962: Silicification. In: Physiology and biochemistry of algae. (Lewin, R. A., ed.), pp. 445–455. New York: Academic Press.

    Google Scholar 

  • —, 1966: Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth. Phycologia6, 1–12.

    Google Scholar 

  • —,Reimann, B. E. F., 1969: Silicon and plant growth. Annu. Rev. Pl. Physiol.20, 289–304.

    Google Scholar 

  • Mehard, C. W., Volcani, B. E., 1975: Similarity in uptake and retention of trace amounts of31Silicon and68Germanium in rat tissues and cell organelles. Bioinorg. Chem.5, 107–124.

    Google Scholar 

  • Mehard, C. W., Sulivan, C. W., Azam, F., Volcani, B. E., 1974: Role of silicon in diatom metabolism. IV. Subcellular localization of Silicon and Germanium inNitzschia alba andCylindrotheca fusiformis. Physiol. Plant.30, 265–272.

    Google Scholar 

  • Moore, L. F., Traquair, J. A., 1976: Silicon, a required nutrient forCladophora glomerata (L.). Kütz (Chlorophyta). Planta128, 179–182.

    Google Scholar 

  • Nelson, D. M., Goering, J. J., 1977: A stable isotope tracer method to measure silicic acid uptake by marine phytoplankton. Anal. Biochem.78, 139–147.

    Google Scholar 

  • Rachow, E. G., 1946: An introduction to the chemistry of the silicones, p. 6. New York: J. Wiley.

    Google Scholar 

  • Rothbuhr, L., Scott, F., 1957: A study of the uptake of silicon and phosphorus by wheat plants, with radiochemical methods. Biochem. J.65, 241–245.

    Google Scholar 

  • Schwab, D. W., Shore, R. E., 1971: Fine structure and composition of a siliceous sponge spicule. Biol. Bull.140, 125–136.

    Google Scholar 

  • Schwarz, K., 1973: A bound form of silicon in glycosaminoglycans and polyuronides. Proc. nat. Acad. Sci.70, 1608–1612.

    Google Scholar 

  • —, 1974: Recent dietary trace element research exemplified by tin, fluorine, and silicon. Fed. Proc.33, 1748–1757.

    Google Scholar 

  • Shore, R. E., 1972: Axial filament of silicious sponge spicules, its organic components and synthesis. Biol. Bull.143, 689–698.

    Google Scholar 

  • Simpson, T. L., Vaccaro, C. A., 1974: An ultrastructural study of silica deposition in the freshwater spongeSpongiella lacustris. J. Ultrastruct. Res.47, 296–309.

    Google Scholar 

  • Spurr, A. R., 1969: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.

    Google Scholar 

  • Sowers, A. E., 1977: Effects of silicic acid analogs on silica body production and wall ultrastructure in stinging cells ofUrtica pilulifera. Ph.D. Thesis, Texas A & M University, College Station, Texas.

    Google Scholar 

  • —, 1978: Silicon-containing silicic acid analogs alter deposits in silica-rich stinging cell walls ofUrtica pilulifera. Amer. Soc. Pl. Physiol. 54th An. Meet. Blacksburg, Va. 25–30 June 1978. Suppl. to: Pl. Physiol.61, 117.

    Google Scholar 

  • Thurston, E. L., 1974: Morphology, fine structure, and ontogeny of the stinging emergence ofUrtica dioica. Amer. J. Bot.61, 809–817.

    Google Scholar 

  • Werner, D., 1967: Untersuchungen über die Rolle der KieselsÄure in der Entwicklung höherer Pflanzen. Planta76, 25–36.

    Google Scholar 

  • —, 1968: BeitrÄge zur Physiologie und Biochemie der KieselsÄure. Ber. dtsch. bot. Ges.81, 425–429.

    Google Scholar 

  • —,Peterson, M., 1973: Traceruntersuchungen mit71Germanium im Silikatstoffwechsel von Diatomeen. Z. Pflanzenphysiol.70, 54–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sowers, A.E., Thurston, E.L. Ultrastructural evidence for uptake of silicon-containing silicic acid analogs byUrtica pilulifera and incorporation into cell wall silica. Protoplasma 101, 11–22 (1979). https://doi.org/10.1007/BF01293431

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01293431

Keywords

Navigation