Skip to main content
Log in

Effects of nickel on the rates of endocytosis, motility, and proliferation inTetrahymena and determinations on the cell content of the metal

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

At concentrations above 1 mM, nickel has a dose-dependent effect on the rate of food vacuole formation in cells in the growth medium, proteose peptone (PP); total inhibition of endocytosis occurs within 10 minutes in 6mM nickel. However, only a 10 times lower concentration of nickel is tolerated by starved cells in an inorganic salt medium, a difference which may be ascribed to the high binding property of nickel to organic material. In the PP medium, nickel affects cell motility by increasing the rate of movement at a concentration of 1 mM, and by causing immobilization after 30 minutes in 6mM nickel; a spontaneous, partial recovery of cell motility is seen after 3 hours in 6 mM nickel. The effects of nickel on endocytosis and cell motility are reversible after removal of nickel. Cell proliferation continues at a reduced rate in 1 mM nickel, while only 1 1/2 cell doublings are achieved in 3 mM nickel during a 72-hour exposure, and no proliferation occurs in 6mM nickel, where an increasing cell mortality is observed after 12 hours. The cell content of nickel relates initially to the external concentration of the metal; however, cells in 1 mM nickel are capable of maintaining a constant content of the metal, whereas in 3 mM, the rate of accumulation is reduced after 3 hours, and cells in 6mM nickel accumulate the metal at a constant rate. All nickel-treated cells contain small refractive granules, previously proposed as representing an ion-regulating system, and the apparent adaption ofTetrahymena to the effects of nickel may be ascribed to such a regulation of the intracellular concentration of the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrivon, C., 1972: The stopping of ciliary movements by nickel salts inParamecium caudatum: the antagonism of K+ and Ca++ ions. Acta Protozool.11, 373–386.

    Google Scholar 

  • —, 1974 a: La perméabilité à l'ion nickel chezParamecium: ses rapports avec le renversement ciliaire. Protistologica10, 175–183.

    Google Scholar 

  • —, 1974 b: Inhibition of ciliary movements by Ni2+ ions in tritonextracted models ofParamecium caudatum. Archs. int. Physiol. Biochim.82, 843–852.

    Google Scholar 

  • Anke, M., Grün, M., Dittrich, C., Groppel, B., Hennig, A., 1974: Low nickel rations for growth and reproduction in pigs. In: Trace Element Metabolism in Animals — 2 (Hoekstra, W. G., Suttie, J. W., Ganther, H. E., Mertz, W., eds.), pp. 715–718. Baltimore: University Park Press.

    Google Scholar 

  • Ballentine, R., Burford, D. D., 1960: Differential density separation of cellular suspensions. Analyt. Biochem.1, 263–268.

    Google Scholar 

  • Bean, B., Harris, A., 1979: Selective inhibition of flagellar activity inChlamydomonas by nickel. J. Protozool.26, 235–240.

    Google Scholar 

  • Bearden, L. J., Cooke, F. W., 1980: Growth inhibition of cultured fibroblasts by cobalt and nickel. J. Biomed. Mater. Res.14, 289–309.

    Google Scholar 

  • Bensimon, J., Rosenfeld, C., 1974: Influence du sulfate de nickel sur la croissance de deux lignéés lymphoblastoides humaines d'orgine normale et leucémique. C. R. Acad. Sci.278, 345–348.

    Google Scholar 

  • Brutkowska, M., 1967: Immobilization effect of NiCl2 and food vacuole formation inParamecium caudatum. Bull. Acad. pol. Sci. II Sér Sci. biol.2, 119–122.

    Google Scholar 

  • Bryan, G. W., 1976: Some aspects of heavy metal tolerance in aquatic organisms. In: Effects of Pollutants on Aquatic Organisms (Lockwood, A. P. M., ed.), pp. 7–34. London-New York-Melbourne: Cambridge University Press.

    Google Scholar 

  • Coleman, J. R., Nilsson, J. R., Warner, R. R., Batt, P., 1972: Qualitative and quantitative electron probe analysis of cytoplasmic granules inTetrahymena pyriformis. Exp. Cell Res.74, 207–219.

    Google Scholar 

  • — — — —, 1973: Effects of calcium and strontium on divalent ion contents of refractive granules inTetrahymena pyriformis. Exp. Cell Res.80, 1–9.

    Google Scholar 

  • Cotton, D. W. K., 1964: Studies on the binding of protein by nickel. With special reference to its role in nickel sensitivity. Br. J. Derm.76, 99–109.

    Google Scholar 

  • Florence, T. M., Batley, G. E., 1977: Determination of chemical forms of trace metals in natural waters. With special reference to copper, lead, cadmium and zinc. Talanta24, 151–158.

    Google Scholar 

  • Gelei, J., 1935: Ni-Infusorien im Dienste der Forschung und des Unterrichtes. Biol. Zbl.55, 57–74.

    Google Scholar 

  • Graham, J., Gardner, D. E., Waters, M. D., Coffin, D. L., 1975: Effect of trace metals on phagocytosis by alveolar macrophages. Infection and Immunity11, 1278–1283.

    Google Scholar 

  • Kuźnicki, L., 1963: Reversible immobilization ofParamecium caudatum evoked by nickel ions. Acta Protozool.1, 301–312.

    Google Scholar 

  • Larsen, J., Nilsson, J. R., 1980: Effects of nickel on vacuole formation and ciliary activity inTetrahymena pyriformis. J. Protozool.27, 50 A.

    Google Scholar 

  • - - 1981: Effects of nickel onTetrahymena and determination of the cell content of the ion. In: Progress in Protozoology, p. 213. Warszawa, Poland.

  • Martin, C. E., Hiramitsu, K., Kitajima, Y., Nozawa, Y., Skriver, L., Thompson, G. A. Jr., 1976: Molecular control of membrane properties during temperature acclimation. Fatty acid desaturase regulation of membrane fluidity in acclimatingTetrahymena cells. Biochemistry15, 5218–5227.

    Google Scholar 

  • Mattox, S. M., Thompson, G. A. Jr., 1980: The effects of high concentrations of sodium or calcium ions on the lipid composition and properties ofTetrahymena membranes. Biochim. biophys. Acta599, 24–31.

    Google Scholar 

  • Mustafa, M. G., Gross, E. C., Munn, R. J., Hardie, J. A., 1971: Effect of divalent metal ions on alveolar macrophage membrane adenosine triphosphatase activity. J. Lab. Clin. Med.77, 563–571.

    Google Scholar 

  • Naitoh, Y., 1966: Reversal response elicited in nonbeating cilia ofParamecium by membrane depolarization. Science154, 660–662.

    Google Scholar 

  • Nandini-Kirshore, S. G., Mattox, S. M., Martin, C. E., Thompson, C. A. Jr., 1979: Membrane changes during growth ofTetrahymena in the presence of ethanol. Biochim. biophys. Acta551, 315–327.

    Google Scholar 

  • Nanney, D. L., McCoy, J. W., 1976: Characterization of the species of theTetrahymena pyriformis complex. Trans. Am. microsc. Soc.95, 664–682.

    Google Scholar 

  • Nielsen, F. H., 1977: Nickel toxicity. In: Advances in Modern Toxicology, Vol.2 (Goyer, R. A., Mehlman, M. A., eds.), p. 129–136. New York-London-Sydney-Toronto: J. Wiley and Sons.

    Google Scholar 

  • —,Ollerich, D. A., 1974: Nickel: A new essential trace element. Fed. Proc.33, 1767–1774.

    Google Scholar 

  • Nilsson, J. R., 1972: Further studies on vacuole formation inTetrahymena pyriformis GL. C. R. Trav. Lab. Carlsberg39, 83–110.

    Google Scholar 

  • —, 1976: Physiological and structural studies onTetrahymena pyriformis GL. C.R. Trav. Lab. Carlsberg40, 215–355.

    Google Scholar 

  • —, 1978: Retention of lead within the digestive vacuoles inTetrahymena. Protoplasma95, 163–173.

    Google Scholar 

  • —, 1979 a: Phagotrophy inTetrahymena. In: Biochemistry and Physiology of Protozoa, Vol. 2 (Levandowsky, M., Hutner, S. H., eds.), p. 339–379. New York-London-Toronto-Sydney-San Francisco: Academic Press.

    Google Scholar 

  • —, 1979 b: Intracellular distribution of lead inTetrahymena during continuous exposure to the metal. J. Cell Sci.39, 383–396.

    Google Scholar 

  • —, 1981 a: Effects of copper on phagocytosis inTetrahymena. Protoplasma109, 359–370.

    Google Scholar 

  • —, 1981 b: On cell organelles inTetrahymena. With special reference to mitochondria and peroxisomes. Carlsberg Res. Commun.46, 279–304.

    Google Scholar 

  • —,Coleman, J. R., 1977: Calcium-rich, refractile granules inTetrahymena pyriformis and their possible role in the intracellular ion-regulation. J. Cell Sci.24, 311–325.

    Google Scholar 

  • Omoto, C. K., Kung, C., 1980: Rotation and twist of the central-pair microtubules in the cilia ofParamecium. J. Cell Biol.87, 33–46.

    Google Scholar 

  • Plesner, P., Rasmussen, L., Zeuthen, E., 1964: Techniques used in the study of synchronousTetrahymena. In: Synchrony in Cell Division and Growth (Zeuthen, E., ed.), pp. 543–563. New York-London-Sydney: Interscience Publishers.

    Google Scholar 

  • Roth, J. S., 1956: Studies on the function of intracellular ribonucleases. I. The action of cobalt and nickel onTetrahymena pyriformis W. Exp. Cell Res.10, 146–154.

    Google Scholar 

  • Schnegg, A., Kirchgessner, M., 1975: Essentiality of nickel for the growth of animals. Z. Tierphysiol. TierernÄhr. Futtermittelkde.36, 63–74.

    Google Scholar 

  • Sigel, H., Becker, K., McCormich, D. B., 1967: Ternary complexes in solution, influence of 2,2′-bipyridyl on the stability of 1∶1 complexes of Co2+, Ni2+, Cu2+, and Zn2+ with hydrogen phosphate adenosine 5′-monophosphate, and adenosine 5′-triphosphate. Biochim. biophys. Acta148, 655–664.

    Google Scholar 

  • Stillwell, E. F., Holland, J. R., 1977: Nickel effect on cell division, calcification and cell protein in the coccolithophorid,Cricosphaera carterae. Sci. Biol. J.3, 401–408.

    Google Scholar 

  • Sunderman, F. W. Jr., 1977: A review of the metabolism and toxicology of nickel. Ann. Clin. Lab. Sci.7, 377–397.

    Google Scholar 

  • Swierenga, S. H. H., Basrur, P. K., 1968: Effect of nickel on cultured rat embryo muscle cells. Lab. Invest.19, 663–674.

    Google Scholar 

  • Tarter, V., 1950: Methods for study and cultivation of protozoa. In: Studies Honoring Trevor Kinacaid (Halt, M. E., ed.), pp. 104–105. Seattle: University of Washington Press.

    Google Scholar 

  • Zanetti, N. C., Mitchell, D. R., Warner, F. D., 1979: Effects of divalent cations on dynein cross bridging and ciliary microtubule sliding. J. Cell Biol.80, 573–588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, J., Nilsson, J.R. Effects of nickel on the rates of endocytosis, motility, and proliferation inTetrahymena and determinations on the cell content of the metal. Protoplasma 118, 140–147 (1983). https://doi.org/10.1007/BF01293071

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01293071

Keywords

Navigation