Skip to main content
Log in

Lateral habenula and hippocampus: A complex interaction raphe cells-mediated

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The study has shown an excitatory influence exerted by lateral habenula (LH) on hippocampal pyramidal cells. The modulatory influence is paradoxically serotonine-mediated; in fact all LH stimulation effects were abolished by intrahippocampal iontophoretic methysergide application. The data suggest the involvement of dorsal raphe nucleus. In fact, the dorsal raphe nucleus stimulation caused on hippocampus an expected inhibitory effect antagonized by intrahippocampal iontophoretic methysergide application. In the context of this neural structure we have highlighted a disinhibitory relation between two types of cells: slow serotonergic efferent neurones and fast GABAergic interneurones. The disinhibitory hypothesis is also supported by the following experimental tests performed on both slow and fast raphe cells: a) LH stimulation at low and high frequencies; b) iontophoretic administration of NMDA and GABA; c) LH stimulation during intraraphe iontophoretic injection of 2-APV (NMDA antagonist) and bicuculline (GABA antagonist).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian GK, Wang RY (1977) Habenula and other midbrain raphe afferents demonstrated by modified retrograde tracing techniques. Brain Res 122: 229–241

    Google Scholar 

  • Aghajanian GK, Wang RY, Barbaran J (1978) Serotonergic and non-serotonergic neurons of the dorsal raphe: reciprocal changes in firing induced by peripheral nerve stimulation. Brain Res 153: 169–175

    Google Scholar 

  • Andrade R, Nicoll RA (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol 394: 99–124

    Google Scholar 

  • Azmitia EC (1978) The serotonine-producing neurons of the midbrain median and dorsal raphe nuclei. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychophar-macology, vol 9. Chemical pathways in the brain. Plenum Press, New York, pp 233–314

    Google Scholar 

  • Baker KG, Halliday GM, Törk I (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301: 147–161

    Google Scholar 

  • Belin MF, Aguera M, Tappaz M, McRae-Degueurce A, Bobillier P, Pujol JF (1979) Gaba-accumulating neurons in the nucleus raphe dorsalis and periaqueductal gray in the rat: a biochemical and radioautographic study. Brain Res 170: 279–297

    Google Scholar 

  • Buzsáki G, Leung LWS, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in behaving rat. Brain Res Rev 6: 139–171

    Google Scholar 

  • Casanovas JM, Artigas F (1996) Differential effects of ipsapirone on 5-hydroxytryptamine release in the dorsal and median raphe neuronal pathways. J Neurochem 67: 1945–1952

    Google Scholar 

  • Celada P, Siuciack JA, Tran TM, Altar CA, Tepper JM (1996) Local infusion of brainderived neurotrophic factor modifies the firing pattern of dorsal raphé serotonergic neurons. Brain Res 712: 293–298

    Google Scholar 

  • Chaput Y, Araneda RC, Andrade R (1990) Pharmacological and functional analysis of a novel serotonin receptor in the rat hippocampus. Eur J Pharmacol 182: 441–456

    Google Scholar 

  • Descarries L, Watkins KC, Garcia S, Baudet A (1982) The serotonin neurons in nucleus raphé dorsalis of adult rat: a light and electron microscope radioautographic study. J Comp Neurol 207: 239–254

    Google Scholar 

  • Ferraro G, Vella N, Morreale D, Sabatino M, La Gratta V (1991) Regulation of hippocampal epilepsy: role of habenulo-raphe pathway. Proceedings of the XVI Spring Meeting of Italian Society of Physiology, Florence, May 24–26, 1989 (Pflügers Arch 418: R137, p 41)

  • Ferraro G, Montalbano ME, Sardo P, La Grutta V (1996) Lateral habenula influence on dorsal raphe neurons. Brain Res Bull 41: 47–52

    Google Scholar 

  • Fonnum F (1984) Glutamate: neurotransmitter in mammalian brain. J Neurochem 42: 1–11

    Google Scholar 

  • Forchetti CM, Meek JL (1981) Evidence for a tonic GABAergic control of serotonin neurons in the median raphe nucleus. Brain Res 206: 208–212

    Google Scholar 

  • Garland JC, Mogenson GJ (1983) An electrophysiological study of convergence of entopeduncular and lateral preoptic inputs on lateral habenular neurons projecting to the midbrain. Brain Res 263: 33–41

    Google Scholar 

  • Globus A (1973) Iontophoretic injection technique. In: Thompson RF, Patterson MM (eds) Bioelectric recording techniques, vol I. Academic Press, New York, pp 23–38

    Google Scholar 

  • Hamlin L, Mackerlova L, Blomqvist A, Ericson AC (1996) AMPA-selective receptor subunits and their relation to glutamate- and GABA-like immunoreactive terminals in the nucleus submedius of the rat. Neurosci Lett 217: 149–152

    Google Scholar 

  • Herkenham M, Nauta WJH (1977) Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber of passage problem. J Comp Neurol 173: 123–146

    Google Scholar 

  • Hirose A, Sasa M, Akaike A, Takori S (1990) Inhibition of hippocampal CA1 neurons by 5-hydroxytrytamine derived from the dorsal raphe nucleus and the 5-hydroxytryptamine 1A agonist SM-3997. Neuropharmacol 29(2): 93–101

    Google Scholar 

  • Imai H, Steindler DA, Kitai ST (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243: 363–380

    Google Scholar 

  • Kalén P, Karlson M, Wiklund L (1985) Possible excitatory aminoacid afferents to nucleus raphe dorsalis of the rat investigated with retrograde wheat germ agglutinin and D-[3H]aspartate tracing. Brain Res 360: 285–297

    Google Scholar 

  • Kalén P, Pritzel M, Nieoullon A, Wiklund L (1986) Further evidence for excitatory amino acid transmission in the lateral habenular projection to the rostral raphe nuclei: lesion-induced decrease of high affinity glutamate uptake. Neurosci Lett 68: 35–40

    Google Scholar 

  • Kinney GG, Kocsis B, Vertes RP (1995) Injections of muscimol into the median raphe nucleus produce hippocampal theta rhythm in the urethane anaesthetized rat. Psychopharmacology 120(3): 244–248

    Google Scholar 

  • Lee EHY, Wang FB, Tang YP, Geyer MA (1987) GABAergic interneurons in the dorsal raphe mediate and effects of apomorphine on serotonergic system. Brain Res Bull 18: 345–353

    Google Scholar 

  • Levine ES, Jacobs BL (1992) Neurochemical afferents controlling the activity of serotonergic neurons in the dorsal raphe nucleus: microiontophoretic study in the awake cat. J Neurosci 12(10): 4037–4044

    Google Scholar 

  • Montalbano ME, Sabatino M, Zagami MT, Ferraro G, Caravaglios G, Vella N, La Grutta V (1991) Electrophysiological and microiontophoretic analysis of the habenulo-hippocampal circuit. Arch Int Physiol Biochim Biophys 99: 275–279

    Google Scholar 

  • Montalbano ME, Zagami MT, Ferraro G, Caravaglios G, Sabatino M, Sardo P, lurato L, La Grutta V (1994) NMDA modulation of 5-HT raphe-hippocampal projection. Proceedings of XLV Annual General Congress of Italian Society of Physiology, Pavia (Italy), September 8–10, 1993 (Pflügers Arch 426: R183, Ab 74)

  • Mugnaini E, Oertel WH (1985) An atlas of the distribution of GABAergic neurons in the rat CNS as revealed by GAD immunochemistry. In: Björklund A, Hökfelt T (eds) GABA and neuropeptides in the CNS. Elsevier, Amsterdam, pp 436–608 (Handbook of chemical neuroanatomy, vol 9)

    Google Scholar 

  • Nanopoulos D, Belin MF, Maitre M, Vincendon G, Pujol JF (1982) Immunocytochemical evidence for the existence of GABAergic neurons in the nucleus raphe dorsalis. Possible existence of neurons containing serotonin and GABA. Brain Res 232: 375–389

    Google Scholar 

  • Nishikawa T, Scatton B (1985) Inhibitory influence of GABA on central serotonergic transmission. Involvement of the habenulo-raphe pathways in the GABAergic inhibition of ascending central serotonergic neurons. Brain Res 331: 81–90

    Google Scholar 

  • Park RM (1987) Intracellular horseradish peroxidase labelling of rapidly firing dorsal raphe projections neurons. Brain Res 402: 117–130

    Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Pierce ET, Foote WE, Hobson JA (1976) The efferent connection of the nucleus raphe dorsalis. Brain Res 107: 137–144

    Google Scholar 

  • Sabatino M, Ferraro G, La Grutta V (1991) Relay stations and neurotransmitters between the pallidal region and the hippocampus. Electroencephalogr Clin Neurophysiol 78: 302–310

    Google Scholar 

  • Salgado D, Alkadhi KA (1995) Inhibition of epileptiform activity by serotonin in rat CA1 neurons. Brain Res 669: 176–182

    Google Scholar 

  • Salgado-Commissariat D, Alkadhi KA (1996) Effects of serotonin on induced epileptiform activity in CA1 pyramidal neurons of genetically epilepsy prone rats. Brain Res 743: 212–216

    Google Scholar 

  • Sawyer SF, Tepper JM, Young SJ, Groves PM (1985) Antidromic activation of dorsal raphe neurones from neostriatum: physiological characterization and effects of terminal autoreceptor activation. Brain Res 332: 15–28

    Google Scholar 

  • Segal M (1975) Physiological and pharmacological evidence for a serotonergic projection to the hippocampus. Brain Res 94: 115–131

    Google Scholar 

  • Segal M (1976) 5-HT antagonists in rat hippocampus. Brain Res 103: 161–166

    Google Scholar 

  • Segal M (1989) Serotonin modulation of hippocampal activity. In: Chan-Palay V, Kohler C (eds) The hippocampus — new vistas. AR Liss, New York, pp 307–315

    Google Scholar 

  • Steinbusch HWM, Nieuwenhuys R (1984) The raphe nuclei of the brainstem: a cytoarchitectonic and immunohistochemical study. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, pp 131–207

    Google Scholar 

  • Stäubli U, Xu FB (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory and LTP induction in the freely moving rat. J Neurosci 15(3): 2445–2452

    Google Scholar 

  • Stern WC, Johnson A, Bronzino JD, Morgane PJ (1979) Effects of electrical stimulation of the lateral habenula on single-unit activity of raphe neurons. Exp Neurol 65: 326–342

    Google Scholar 

  • Stezhka VV, Lovick TA (1995) Dye coupling between dorsal raphe neurones. Exp Brain Res 105: 383–390

    Google Scholar 

  • Tao R, Auerbach SB (1995) Involvement of the dorsal raphe but not median raphe nucleus in morphine-induced increases in serotonine release in the rat forebrain. Neuroscience 68: 553–561

    Google Scholar 

  • Törk I, Hornung JP (1990) Raphe nuclei and the serotonergic system. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 1001–1022

    Google Scholar 

  • VanderMaelen CP, Aghajanian GK (1983) Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res 289: 109–119

    Google Scholar 

  • Vertes RP (1986) Brainstem modulation of the hippocampus. Anatomy, physiology and significance. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol 4. Plenum Press, New York, pp 41–75

    Google Scholar 

  • Wang RY, Aghajanian GK (1977a) Antidromically identified serotonergic neurons in the rat midbrain raphe: evidence for collateral inhibition. Brain Res 132: 186–193

    Google Scholar 

  • Wang RY, Aghajanian GK (1977b) Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science 197: 89–91

    Google Scholar 

  • Wang QP, Nakai Y (1994) Dorsal raphe: an important nucleus in the pain modulation. Brain Res Bull 34: 575–585

    Google Scholar 

  • Wang QP, Ochiai H, Nakai Y (1992) GABAergic innervation of serotonergic neurons in the dorsal raphe nucleus of the rat studied by electron microscopy double immunostaining. Brain Res Bull 29: 943–948

    Google Scholar 

  • Wang QP, Guan JL, Nakai Y (1996) Electron microscopic study of GABAergic synaptic innervation of neurotensin-immunoreactive neurons in the dorsal raphe nucleus. Brain Res 730: 118–124

    Google Scholar 

  • Zagami MT, Montalbano ME, Sabatino M, Ferraro G, Vella N, La Grutta V (1989) Habenular effect on hippocampal excitability is not cholinergically-mediated. Pharmacol Res 21: 41–42

    Google Scholar 

  • Zagami MT, Ferraro G, Montalbano ME, Sardo P, La Grutta V (1995a) Lateral habenula and hippocampal units: electrophysiological and iontophoretic study. Brain Res Bull 36: 539–543

    Google Scholar 

  • Zagami MT, Montalbano ME, Ferraro G, Sardo P, Caravaglios G, La Grutta V (1995b) Electrophysiological and iontophoretic aspects of the habenular influence on hippocampal neurones. Arch Physiol Biochem 103: 59–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraro, G., Montalbano, M.E., Sardo, P. et al. Lateral habenula and hippocampus: A complex interaction raphe cells-mediated. J. Neural Transmission 104, 615–631 (1997). https://doi.org/10.1007/BF01291880

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01291880

Keywords

Navigation