Skip to main content
Log in

Effect of throughflow on Marangoni convection in micropolar fluids

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The effect of throughflow on the onset of Marangoni convection in a horizontal layer of micropolar fluid flow bounded below by a rigid isothermal surface and above by a nondeformable free adiabatic surface, for marginal state, is studied. The determination of the critical Marangoni number entails solving the eigenvalue problem numerically for which the Single-term Galerkin method is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Napolitano, L. G.: Marangoni convection in space. Micrograv. Environ. Sci.225, 197–198 (1984).

    Google Scholar 

  2. Zierep, J., Oertel, Jr.: Convective transport and instability phenomena. Karlsruhe: G. Braun 1982.

    Google Scholar 

  3. Ostrach, S.: The influence of convection in continuous flow electrophoresis. ESA Special Publication114, 141–147 (1979).

    Google Scholar 

  4. Scriven, L. E., Sternling, C. V.: On cellular convection driven by surface tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech.19, 321–340 (1964).

    Google Scholar 

  5. Smith, K. A.: On convective instability induced by surface tension gradients. J. Fluid Mech.24, 401–414 (1966).

    Google Scholar 

  6. Nield, D. A.: The onset of transient convective instability. J. Fluid Mech.71, 441–454 (1975).

    Google Scholar 

  7. Friedrich, R., Rudraiah, N.: Marangoni convection in a rotating fluid layer with non-uniform temperature gradient. Int. J. Heat Mass Transfer27, 443–449 (1984).

    Google Scholar 

  8. Vidal, A., Acrivos, A.: Nature of the neutral state in surface tension driven convection. Phys. Fluids9, 615–616 (1966).

    Google Scholar 

  9. Debler, W. R., Wolf, L. F.: The effects of gravity and surface tension gradients on cellular convection in fluid layers with parabolic temperature profiles. Trans. ASME, Series C, J. Heat Transfer92, 351–358 (1970).

    Google Scholar 

  10. McConaghy, G. A., Finlayson, B. A.: Surface tension driven oscillatory instability in a rotating fluid layer. J. Fluid Mech.39, 49–55 (1969).

    Google Scholar 

  11. Rudraiah, N., Ramachandramurthy, V., Chandana, O. P.: Effect of magnetic field and non-uniform temperature gradient on Marangoni convection. Int. J. Heat Mass Transfer28, 1621–1624 (1985).

    Google Scholar 

  12. Rudraiah, N.: Surface tension driven convection subjected to rotation and nonuniform temperature gradient. Mausam37, 39–44 (1986).

    Google Scholar 

  13. Rudraiah, N.: The onset of transient Marangoni convection in a liquid layer subjected to rotation about a vertical axis. Mater. Sci. Bull. Ind. Acad. Sci.4, 297–309 (1982).

    Google Scholar 

  14. Rudraiah, N., Veerappa, B., Balachandra Rao, S.: Effects of non-uniform thermal gradient and adiabatic boundaries on convection in porous media. Trans. ASME, Series C. J. Heat Transfer102, 254–260 (1980).

    Google Scholar 

  15. Wooding, R. A.: Rayleigh instability of a thermal boundary layer in flow through porous medium. J. Fluid Mech.9, 183–192 (1960).

    Google Scholar 

  16. Sutton, F. M.: Onset of convection in a porous channel with net throughflow. Phys. Fluids13, 1931–1934 (1970).

    Google Scholar 

  17. Homsy, G. M., Sherwood, A. E.: Connective instabilities in porous media with throughflow. AICh.E. J.22, 168–174 (1976).

    Google Scholar 

  18. Nield, D. A.: Convective instability in porous media with throughflow. AICh.E. J.33, 1222–1224 (1987).

    Google Scholar 

  19. Nield, D. A.: Throughflow effects in the Rayleigh-Bénard convective instability problem. J. Fluid Mech.185, 353–360 (1987).

    Google Scholar 

  20. Jones, M. C., Persichetti, J. M.: Connective instability in packed beds with throughflow. AICh.E. J.32, 1555–1557 (1986).

    Google Scholar 

  21. Eringen, A. C.: Theory of micropolar fluids. J. Math. Mech.16, 1–16 (1966).

    Google Scholar 

  22. Siddheswar, P. G., Pranesh, S.: Effect of non-uniform basic temperature gradient on Rayleigh-Bénard convection in a micropolar fluid. Int. J. Eng. Sci.36, 1183–1196 (1998).

    Google Scholar 

  23. Pearson, J. R. A.: On convective cells induced by surface tension. J. Fluid Mech.4, 489–500 (1958).

    Google Scholar 

  24. Datta, A. B., Sastry, V. U. K.: Thermal instability of a horizontal layer of micropolar fluid heated from below. Int. J. Eng. Sci.14, 631–637 (1976).

    Google Scholar 

  25. Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. Oxford: Clarendon press 1962.

    Google Scholar 

  26. Finlayson, B. A.: The method of weighted residual and variational principles. New York: Academic Press 1972.

    Google Scholar 

  27. Krishna, M. V., Rudraiah, N., Shivakumara, I. S.: Effect of throughflow on Marangoni convection. Int. Comm. Heat Mass Transfer (In press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murty, Y.N., Ramana Rao, V.V. Effect of throughflow on Marangoni convection in micropolar fluids. Acta Mechanica 138, 211–217 (1999). https://doi.org/10.1007/BF01291845

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01291845

Keywords

Navigation