Skip to main content
Log in

Nuclear reaction spectroscopy of vibrational modes of solids

  • Published:
Zeitschrift für Physik A Atomic Nuclei

Abstract

The effects of target-atom vibrations on nuclear reaction kinetics have been examined. In particular, Doppler broadening of resonance-type and elastic-scattering reactions has been considered in detail. Depending on the specific process parameters, the resulting energy widths can be many orders of magnitude larger than the energies of the vibrational states of the target solid. Comparison of experimental results on a hydrogen-bearing thin target with the theoretical predictions shows excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Izsak, K., Berthold, J., Kalbitzer, S.: Nucl. Instrum. Methods B15, 34 (1986)

    Google Scholar 

  2. Jousten, K., Frerichs, H.P., Kalbitzer, S.: Nucl. Instrum. Methods B15, 322 (1986)

    Google Scholar 

  3. Zinke-Allmang, M., Kalbitzer, S., Weiser, M.: Z., Phys. A — Atoms and Nuclei320, 697 (1985)

    Google Scholar 

  4. Zinke-Allmang, M., Kalbitzer, S.: Z. Phys. A — Atoms and Nuclei323, 251 (1986)

    Google Scholar 

  5. Bethe, H.A.: Rev. Mod. Phys.9, 69 (1937)

    Google Scholar 

  6. Bethe, H.A., Placzek, G.: Phys. Rev.51, 450 (1937)

    Google Scholar 

  7. Messiah, A.: Quantum mechanics. Vol. 1. Amsterdam, Oxford: North-Holland Publishing Company 1975

    Google Scholar 

  8. Weidenmüller, H.A.: Private communication

  9. Amsel, G., Cohen, C., Maurel, B.: Nucl. Instrum. Methods B14, 226 (1986)

    Google Scholar 

  10. Goldstein, H.: Classical mechanics. Reading MA: Addison-Wesley Publishing Company 1980

    Google Scholar 

  11. Zinke-Allmang, M.: PhD Thesis, Heidelberg 1985

  12. Maurel, B., Amsel, G.: Nucl. Instrum. Methods 218, 159 (1983)

    Google Scholar 

  13. Damjantschitsch, H., Weiser, M., Heusser, G., Kalbitzer, S., Mannsperger, H.: Nucl. Instrum. Methods218, 129 (1983)

    Google Scholar 

  14. Uhrmacher, M., Pampus, K., Bergmeister, F.J., Purschke, D., Lieb, K.P.: Nucl. Instrum. Methods B9, 234 (1985)

    Google Scholar 

  15. Gorodetzky, S., et al.: Nucl. Phys. A113, 221 (1968)

    Google Scholar 

  16. Endt, P.M., Van der Leun, C.: Nucl. Phys. A310, 1 (1978)

    Google Scholar 

  17. Zinke-Allmang, M., Kößler, V., Kalbitzer, S.: Nucl. Instrum. Methods B15, 563 (1986)

    Google Scholar 

  18. Weiser, M.: Ph.D. Thesis, Heidelberg 1984

  19. Thomas, J.P., Fallavier, M., Tousset, J.: Nucl. Instrum. Methods187, 573 (1981)

    Google Scholar 

  20. Thomas, J.P., Fallavier, M., Pijolat, C., Tousset, J.: Radiat. Eff.61, 207 (1982)

    Google Scholar 

  21. Williams, D.H., Fleming, I.: Spectroskopische Methoden zur Strukturaufklärung. Stuttgart: Thieme 1979

    Google Scholar 

  22. James, F., Roos, M.: Comput. Phys. Commun.10, 343 (1975)

    Google Scholar 

  23. James, F.: Comput. Phys. Commun.20, 29 (1980)

    Google Scholar 

  24. Zinke-Allmang, M.: Diplomarbeit MPIK 1983

  25. Dechema-Kurs: Planung und Auswertung von Versuchen zur Erstellung mathematischer Modelle. Institut für Tech. Chemie I, Universität Erlangen-Nürnberg (1980)

  26. Demond, F.-J., Kalbitzer, S., Mannsperger, H., Damjantschitsch, H.: Phys. Lett.93A, 503 (1983)

    Google Scholar 

  27. Bohr, N.: Dan. Videns. Selsk. Mat.-Fys. Medd.18, 8 (1948)

    Google Scholar 

  28. Sakamoto, M.: J. Phys. Soc. Jpn.19, 1862 (1964)

    Google Scholar 

  29. Holleman, A.F., Wiberg, E.: Lehrbuch der anorganischen Chemie. Berlin: de Gruyter 1976

    Google Scholar 

  30. Staab, H.A.: Einführung in die theoretische organische Chemie. Weinheim: Verlag Chemie 1960

    Google Scholar 

  31. Amsel, G., Maurel, B.: Nucl. Instrum. Methods218, 183 (1983)

    Google Scholar 

  32. Lanford, W.A.: Nucl. Instrum. Methods149, 1 (1978)

    Google Scholar 

  33. Donhowe, J.M., Ferry, J.A., Mouard, W., Herb, R.G.: Nucl. Phys. A102, 383 (1967)

    Google Scholar 

  34. Gemmel, D.S.: Chem. Rev.80, 301 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We want to thank Prof. H.A. Weidenmüller, Heidelberg, for his comments on the treatment of ensembles of randomly oriented oscillators, and Prof. G. Amsel, Paris, for his stimulating discussions on the Doppler effect. Mr. V. Kößler and Mr. R. Pfahler supported this work by providing the excellent working conditions at the Heidelberg EN-tandem accelerator. We are grateful to Dr. H. Baumann, Frankfurt, for runs on the 7 MV accelerator. Both Profs. R.G. Stokstad, on leave from Berkeley, and U. Schmidt-Rohr, Heidelberg, drew our attention to the feasibility of analyzing the knocked out target nucleus with respect to the Doppler effect.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinke-Allmang, M., Kalbitzer, S. & Weiser, M. Nuclear reaction spectroscopy of vibrational modes of solids. Z. Physik A - Atomic Nuclei 325, 183–191 (1986). https://doi.org/10.1007/BF01289649

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01289649

PACS

Navigation