Skip to main content
Log in

The effect of ionophore A 23187 and ruthenium red on tentacle contraction and ultrastructure inDiscophrya collini: Evidence of calcium fluxing from intracellular reservoirs

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The suctorian protozoonDiscophrya collini has contractile tentacles with microfilaments and a central microtubule-lined canal (axoneme). The role of calcium fluxing in tentacle contraction has been investigated using the Ca2+ ionophore A 23187 and ruthenium red (RR), a known inhibitor of certain Ca2+ membrane transport events. Treatment with CaCl2 alone caused tentacle contraction with a threshold at 5 × 10−3 M CaCl2 and a maximum at 5 × 10−2 M CaCl2 with contraction to 32.8% of the original length. In the presence of 5 μM ionophore A 23187 the threshold was lowered to 5 × 10−6 M CaCl2 with a maximum to 19.6% original length at 5 × 10−2 M CaCl2. A 23187 alone induced contraction with a threshold of 3.0 μM and a maximum to 30.5% original length at 10 μM A 23187. Treatment with RR alone had little effect on tentacle length. However, a 10 μM A 23187-induced contraction was partially counteracted by the simultaneous application of RR with a threshold at 2 μM RR and a maximum at 8 μM RR. Removal of the ionophore after induced tentacle contraction resulted in partial re-extension, which was inhibited by RR. Ultrastructural observations indicated that the ionophore and CaCl2-induced contraction processes are indistinguishable. The CaCl2/ionophore treatments led to axonome disruption, interpreted as a consequence of supranormal levels of intracellular Ca2+. X-ray microanalysis of cytoplasmic membrane-bound elongate dense bodies (EDB) showed a high level of Ca2+ in CaCl2-treated cells, little Ca2+ in ionophore-treated cells and intermediate levels in the RR-treated, ionophore/RR-treated and untreated control cells. It is suggested that A 23187 enhances both the uptake of extracellular Ca2+ and the release of Ca2+ from the EDB, the latter being counteracted by RR. These observations support the proposal that the EDB act as Ca2+ reservoirs, and that their Ca2+ fluxing moderates cytosolic Ca2+ levels which mediate a Ca2+-dependent tentacle contraction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akberali, H. B., Earnshaw, M. J., 1982: The mechanism of calcium transport in mitochondria isolated from the marine mussel,Mytilus edulis (L.). Cell Calcium3, 55–66.

    Google Scholar 

  • Babcock, D. F., Stamerjohn, D. M., Hutchinson, T., 1978: Calcium redistribution in individual cells correlated with ionophore action on motility. J. exp. Zool.204, 391–400.

    Google Scholar 

  • Barle, A. B., Studer, R., 1978: Effect of calcium ionophores on the transport and distribution of calcium in isolated cells and in liver and kidney slices. J. Memb. Biol.38, 51–72.

    Google Scholar 

  • Bernardi, P., Azzone, G. F., 1979: Δ pH induced calcium fluxes in rat liver mitochondria. Eur. J. Biochem.102, 555–562.

    Google Scholar 

  • Bygrave, F. L., 1977: Mitochondrial calcium transport. In: Current Topics in Bioenergetics, Vol. 6 (Sanadi, D. R., ed.), pp. 259–318. New York: Academic Press.

    Google Scholar 

  • —,Daday, A. A., Doy, F. A., 1975: Evidence for a calcium-ion transport system in mitochondria isolated from flight muscle of the developing sheep blowflyLucilia cuprina. Biochem. J.146, 601–608.

    Google Scholar 

  • Curry, A., Butler, R. D., 1976: The ultrastructure, function and morphogenesis of the tentacle inDiscophrya sp. (Suctorida, Cileatea). J. Ultrastruct. Res.56, 164–176.

    Google Scholar 

  • Desmedt, J. E., Hainaut, K., 1976: The effects of A 23187 ionophore on calcium movement and contraction processes in single barnacle muscle fibres. J. Physiol. (Lond.)257, 87–107.

    Google Scholar 

  • Fletcher, J. M.,Greenfield, B. F.,Hardy, C. J.,Scargill, D.,Woodhead, J. L., 1961: Ruthenium red. J. chem. Soc. (London) Part 2, 2000–2006.

  • Fuller, G. M., Ellison, J. J., McGill, M., Sordahl, L. A., Brinkley, B. R., 1975: Studies on the inhibitory role of calcium in the regulation of microtubule assemblyin vitro andin vivo. In: Microtubules and Microtubule Inhibitors (Borgers, M., De Brabander, M., eds.), pp. 379–390. Amsterdam: North-Holland.

    Google Scholar 

  • Geldard, B., 1977: Cytological and physiological studies ofDendrocometes paradoxus (Stein). Ph.D. Thesis, University of Manchester.

  • Grinstein, S., Erlij, D., 1976: Action of insulin and cell calcium: Effect of ionophore A 23187. J. Memb. Biol.29, 313–328.

    Google Scholar 

  • Hackney, C. M., Al-Khazzar, A. R., Butler, R. D., 1982: Tentacle contraction and ultrastructure inDiscophrya collini: The response to cations. Protoplasma112, 92–100.

    Google Scholar 

  • —,Butler, R. D., 1981 a: Tentacle contraction in glycerinatedDiscophrya collini and the localization of HMM-binding filaments. J. Cell Sci.47, 65–75.

    Google Scholar 

  • — —, 1981 b: Distribution of calcium in the suctorianDiscophrya collini: An X-ray microanalytical study. Tissue and Cell13, 453–459.

    Google Scholar 

  • — —, 1981 c: Electrically-induced tentacle retraction in the suctorian protozoonDiscophrya collini (Root). J. Protozool.28, 151–157.

    Google Scholar 

  • Hauser, M., Van Eyes, H., 1976: Microtubules and associated microfilaments in the tentacles of the suctorianHeliophrya erhardi Matthes. J. Cell Sci.20, 589–617.

    Google Scholar 

  • Kirschner, M. W., Suter, M., Weingarten, M., Littman, D., 1975: The role of rings in the assembly of microtubulesin vitro. Ann. N.Y. Acad. Sci.253, 90–106.

    Google Scholar 

  • Lee, H. C., Auerspery, N., 1980: Calcium in epithelial cell contraction. J. Cell Biol.85, 325–336.

    Google Scholar 

  • Moore, C. L., 1971: Specific inhibition of mitochondrial Ca2+ transport by ruthenium red. Biochem. biophys. Res. Comm.42, 298–305.

    Google Scholar 

  • Moore, L., Pastan, I., 1979: A calcium requirement for movement of cultured cells. J. Cell Physiol.101, 101–108.

    Google Scholar 

  • Murray, J. J., Reed, P. W., Fay, F. S., 1975: Contraction of isolated smooth muscle cells by ionophore A 23187. Proc. Nat. Acad, Sci. U.S.A.72, 4459–4463.

    Google Scholar 

  • Okajima, A., 1957: Protoplasmic contraction observed on the tentacles of the suctorian. I. Effects of electrolytes in the medium. Annot. Zool. Japanensis30, 51–62.

    Google Scholar 

  • Pfeiffer, D. R., Taylor, R. W., Lardy, H. A., 1978: Ionophore A 23187. Cation binding and transport properties. Ann. N.Y. Acad. Sci.307, 402–421.

    Google Scholar 

  • Publicover, S. J., Duncan, C. J., Smith, J. L., 1977: Ultrastructural changes in muscle mitochondriain situ including the apparent development of internal septa, associated with the uptake and release of calcium. Cell Tiss. Res.185, 373–385.

    Google Scholar 

  • Reed, K. C., Bygrave, F. L., 1974: The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem. J.140, 143–155.

    Google Scholar 

  • Reed, P. W., Lardy, H. A., 1972: A 23187: A divalent cation ionophore. J. biol. Chem.247, 6970–6977.

    Google Scholar 

  • Reynolds, S., 1963: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.39, 491–497.

    Google Scholar 

  • Schanne, F. A. X., Kane, A. B., Young, E. E., Farbrer, J. L., 1979: Calcium dependence of toxic cell death: A final common pathway. Science206, 700–702.

    Google Scholar 

  • Segal, J., Ingbar, S. H., 1982: A postulated mechanism for the coordinate effect of ionophore A 23187 on calcium uptake and cell viability in rat thymocytes. Biochim. biophys. Acta684, 7–11.

    Google Scholar 

  • Stewart, G. R., 1972: The regulation of nitrate reductase level inLemma minor L. J. exp. Bot.23, 171–183.

    Google Scholar 

  • Tucker, J. B., 1974: Microtubule arms and cytoplasmic streaming and microtubule bending and stretching of intertubule links in the feeding tentacle of the suctorian ciliateTokophrya. J. Cell Biol.62, 424–437.

    Google Scholar 

  • Vasington, F. D., Gazzotti, P., Tiozzo, R., Carafoli, E., 1972: The effect of ruthenium red on Ca2+ transport and respiration in rat liver mitochondria. Biochim. biophys. Acta256, 43–54.

    Google Scholar 

  • Watson, E. L., Vincenzi, F. F., Davis, P. W., 1971: Ca2+-activated membrane ATPase: Selective inhibition by ruthenium red. Biochim. biophys. Acta249, 606–610.

    Google Scholar 

  • White, J. G., 1974: Effects of an ionophore, A 23187, on the surface morphology of normal erythrocytes. Amer. J. Pathol.77, 507–518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Khazzar, A.R., Butler, R.D. & Earnshaw, M.J. The effect of ionophore A 23187 and ruthenium red on tentacle contraction and ultrastructure inDiscophrya collini: Evidence of calcium fluxing from intracellular reservoirs. Protoplasma 117, 158–166 (1983). https://doi.org/10.1007/BF01288354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01288354

Keywords

Navigation