Skip to main content
Log in

Fine structure and cytochemistry of the nuclei of the primitive ciliateTracheloraphis crassus (Karyorelictida)

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The nuclei ofTracheloraphis crassus were studied using light and electron microscopy combined with Bernhard's RNP staining and pronase digestion. The nuclear apparatus of this species consists of a longitudinal row of 11–43 macronuclei and 4–16 micronuclei. Like in all karyorelictids, the macronuclei are unable to divide and become segregated during cytokinesis; their number is supplemented in every cell cycle by differentiation of several new macronuclei from micronuclei.

Each adult macronucleus contains a single compact endonuclear aggregate of several large chromocenters, readily destained with EDTA, and several RNP containing nucleoli. There is continuity between the material of the chromocenters and the decondensed DNP fibrils in the nuclear matrix. The nucleoli contain NORs in the form of fibrillar centers. The endonuclear aggregate includes also groups of RNP granules which are especially resistant to EDTA destaining. A microfibrillar sphere, usually localized at the periphery of the aggregate, contacts one or several nucleoli. The sphere is not bleached with EDTA, and only its periphery becomes digested with pronase. The macronuclear matrix consists of both protein fibrils and pronase-resistant fibrils, the latter being localized at the nuclear periphery.

Developing macronuclear primordia contain loose strands of decondensed chromatin; only later they form chromocenters and nucleoli.

The micronuclei reproduce by mitosis with typical chromosomes (2n=66). During interphase, they are filled with condensed chromatin which can be bleached with EDTA; they form no nucleoli. Ring-like lamellae, existing in the cavities of the chromatin mass, stain for RNA (after Bernhard) and are pronase-sensitive. These lamellae resemble the kinetochore material conserved during interphase in another karyorelictid ciliate,Trachelocerca geopetiti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernhard, W., 1969: A new staining procedure for electron microscopical cytology. J. Ultrastruct. Res.27, 250–265.

    PubMed  Google Scholar 

  • Bielek, E., 1978: Structure and ribonucleoprotein staining of kinetochores of colchicine-treated HeLa cells. Cytobiologie16, 480–484.

    PubMed  Google Scholar 

  • Bobyleva, N. N., Kudryavtsev, B. N., Raikov, I. B., 1980: Changes of the DNA content of differentiating and adult macronuclei of the ciliateLoxodes magnus (Karyorelictida). J. Cell Sci.44, 375–394.

    PubMed  Google Scholar 

  • Bouteille, M., Laval, M., Dupuy-Coin, A. M., 1974: Localization of nuclear functions as revealed by ultrastructural autoradiography and cytochemistry. In: The Cell Nucleus, Vol. 1 (Busch, H., ed.), pp. 3–71. New York and London: Academic Press.

    Google Scholar 

  • Braselton, J. P., 1975: Ribonucleoprotein staining ofAliium cepa kinetochores. Cytobiologie12, 148–151.

    Google Scholar 

  • —, 1980: Ribonucleoprotein staining ofLuzula kinetochores. Canad. J. Genet. Cytol.22, 7–10.

    Google Scholar 

  • Burglen, M.-J., 1974: Quelques précisions techniques concernant l'emploi de la coloration régressive à l'EDTA. J. Microsc.21, 193–196.

    Google Scholar 

  • Chaly, N., Setterfield, G., Kaplan, J. G., Brown, D. L., 1983: Nuclear bodies in mouse splenic lymphocytes: II. Cytochemistry and autoradiography during stimulation by concanavalin A. Biol. Cell49, 35–44.

    PubMed  Google Scholar 

  • Corliss, J. O., 1979: The ciliatedProtozoa. Characterization, classification and guide to the literature. 2nd ed., 455 pp. Oxford-New York: Pergamon Press.

    Google Scholar 

  • Deltour, R., Gautier, A., Fakan, J., 1979: Ultrastructural cytochemistry of the nucleus ofZea mays embryos during germination. J. Cell Sci.40, 43–62.

    PubMed  Google Scholar 

  • Dupuy-Coin, A. M., Kalifat, S. R., Bouteille, M., 1972: Nuclear bodies as proteinaceous structures containing ribonucleoproteins. J. Ultrastruct. Res.38, 174–187.

    PubMed  Google Scholar 

  • Esponda, P., 1978: Cytochemistry of kinetochores under electron microscopy. Exp. Cell Res.114, 247–252.

    PubMed  Google Scholar 

  • Goessens, G., Lepoint, A., 1979: The nucleolus-organizing regions (NORs): recent data and hypotheses. Biol. Cell.35, 211–220.

    Google Scholar 

  • Hancock, R., Boulikas, T., 1982: Functional organization in the nucleus. Intern. Rev. Cytol.79, 165–214.

    Google Scholar 

  • Hollande, A., Carruette-Valentin, J., 1971: Les atractophores, l'induction du fuseau et la division cellulaire chez les Hypermastigines. Étude infrastructurale et révision systématique des Trichonymphines et des Spirotrichonymphines. Protistologica7, 5–100.

    Google Scholar 

  • Kluyeva, T. S., Chentsov, Yu. S., 1977: (Morphology and localization of the ribonucleoprotein components in various types of interphasic nuclei of some higher plants). Cytologiya i Genetika (Kiev)13, 497–502 (in Russian, English summary).

    Google Scholar 

  • — —,Polyakov, V. Yu., 1978: (Electron microscopic study of the nuclei ofEuglena gracilis). Cytologiya (Leningrad)20, 987–991 (in Russian, English summary).

    Google Scholar 

  • Kovaleva, V. G., Raikov, I. B., 1978: Diminution and re-synthesis of DNA during development and senescence of the “diploid” macronuclei of the ciliateTrachelonema sulcata (Gymnostomata, Karyorelictida). Chromosoma67, 177–192.

    Google Scholar 

  • Kubai, D. F., 1973: Unorthodox mitosis inTrichonympha agilis: kinetochore differentiation and chromosome movement. J. Cell Sci.13, 511–552.

    PubMed  Google Scholar 

  • Mollenhauer, H. H., 1964: Plastic embedding mixtures for use in electron microscopy. Stain Technol.39, 111–114.

    PubMed  Google Scholar 

  • Moyne, G., Bertaux, O., Puvion, E., 1975: The nucleus ofEuglena. I. An ultracytochemical study of the nucleic acids and nucleoproteins of synchronizedEuglena gracilis Z. J. Ultrastruct. Res.52, 362–376.

    PubMed  Google Scholar 

  • Olins, A. L., Olins, D. E., Franke, W. W., Lipps, H. J., Prescott, D. M., 1981: Stereo-electron microscopy of nuclear structure and replication in ciliated protozoa (Hypotricha). Europ. J. Cell Biol.25, 120–130.

    PubMed  Google Scholar 

  • Puvion, E., Moyne, G., 1981:In situ localization of RNA structures. In: The Cell Nucleus, Vol. 8 (Busch, H., ed.), pp. 59–115. New York: Academic Press.

    Google Scholar 

  • Puvion-Dutilleul, F., 1983: Morphology of transcription at cellular and molecular levels. Intern. Rev. Cytol.84, 57–101.

    Google Scholar 

  • Pearson, E. C., Davies, H. G., 1982: A critical evaluation of Bernhard's EDTA regressive staining technique for RNA. J. Cell Sci.54, 207–240.

    PubMed  Google Scholar 

  • Raikov, I. B., 1963: [The ciliates of the mesopsammon of the Ussuri Gulf (Sea of Japan)]. Zool. Zhurnal (Moscow)42, 1753–1767 (in Russian, English summary).

    Google Scholar 

  • —, 1974: Fine structure of the nuclear apparatus of a lower psammobiotic ciliateTracheloraphis dogieli Raikov. Acta Protozool.13, 85–96.

    Google Scholar 

  • —, 1979: Fine structure of the nuclear apparatus ofRemanella multinucleata Kahl (Ciliophora, Gymnostomata). Arch. Protistenk.121, 1–19.

    Google Scholar 

  • —, 1982: The protozoan nucleus. Morphology and evolution. Cell Biology Monographs, Vol. 9, 474 pp. Wien-New York: Springer.

    Google Scholar 

  • —, 1984: Fine structure of the nuclear apparatus of the marine psammobiotic ciliateGeleia orbis Fauré-Fremiet (Karyorelictida). Arch. Protistenk.128, 231–252.

    Google Scholar 

  • - 1985: Primitive never-dividing macronuclei of some lower ciliates. Intern. Rev. Cytol.95 (in press).

  • —,Kovaleva, V. G., 1980: Electron microscopic cytochemistry of the macro- and micronuclei of the lower ciliateTracheloraphis dogieli (Karyorelictida). Cytologiya (Leningrad)22, 1139–1145 (in Russian, English summary).

    Google Scholar 

  • — —, 1981: Fine structural morphology and cytochemistry of the nuclei of the lower marine ciliateTrachelocerca geopetiti (Karyorelictida). Protistologica17, 113–130.

    Google Scholar 

  • —,Morat, G., 1977: Étude autoradiographique de la synthèse de l'ADN et de l'ARN dans les noyaux du CiliéLoxodes magnus Stokes. Protistologica13, 391–399.

    Google Scholar 

  • Rieder, C. L., 1979: Ribonucleoprotein staining of centrioles and kinetochores in newt lung cell spindles. J. Cell Biol.80, 1–9.

    PubMed  Google Scholar 

  • —, 1982: The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Intern. Rev. Cytol.79, 1–58.

    Google Scholar 

  • Stuckert, J. C., 1976: Differential staining between nucleolar and non-nucleolar ribonucleoprotein-containing structures by a modified uranyl-EDTA-lead method. J. Histochem. Cytochem.24, 1207–1210.

    PubMed  Google Scholar 

  • Uhlig, G., 1964: Eine einfache Methode zur Extraktion der vagilen, mesopsammalen Mikrofauna. Helgol. wiss. Meeresuntersuch.11, 178–185.

    Google Scholar 

  • —, 1968: Protozoen. In: Methoden der Meeresbiologischen Forschung (Schlieper, C., ed.), pp. 119–129. Jena: VEB G. Fischer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raikov, I.B., Karadzhan, B.P. Fine structure and cytochemistry of the nuclei of the primitive ciliateTracheloraphis crassus (Karyorelictida) . Protoplasma 126, 114–129 (1985). https://doi.org/10.1007/BF01287678

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01287678

Keywords

Navigation