Skip to main content
Log in

Freeze-fracture study of ordered arrays of particles in the plasma membrane ofChlamydobotrys stellata Korsch. (Volvocales)

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Ultrarapid cyrofixation procedures revealed the existence of ordered arrays of intramembrane particles on E fracture faces and corresponding ordered imprints on P faces in freeze-fractured plasma membrane of the green algaeChlamydobotrys stellata (Korschikoff). The structure of these arrays is very sensitive to cryofixation conditions and particularly to glutaraldehyde prefixation which leads to the formation of amorphous two-dimensional aggregates. The size of the individual ordered arrays and the ratio of ordered to total surface of the membrane increase with growth temperature from 15°C to 30°C with a corresponding decrease in cell generation time. Above 30°C the size of the individual ordered arrays decreases. At high, but sublethal temperature (above 37°C) the ordered arrays become smaller. In addition to the predominant two-dimensional oblique organization (a=12.0nm, b=12.6nm, γ=80°), square and tetragonal arrangements are also present. The cell wall is composed of many layers, one of which displays a “zipper-like structure” composed of periodic ridges 25 nm distant, sandwiched between two more or less fibrillar layers. The appearance and changes of the organization of ordered arrays are discussed in relation to their eventual physiological role during the life cycle of the cells and in particular to the formation of the cell wall and the median periodic leaflet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arancia, G., Rosati-Valente, F., Trovalusci-Crateri, P., 1980: Effects of glutaraldehyde and glycerol on freeze-fracturedEscherichia coli J. Microscopy118, Pt. 2, 161–176.

    Google Scholar 

  • Bachmann, L., Schmitt, W. W., Plattner, H., 1972: Improved cryofixation: demonstrated on freeze etched solutions, cell fractions and unicellular organisms, p. 244 (Proc. Fifth European Congress on Electron Microscopy). London and Bristol: The Institute of Physics.

    Google Scholar 

  • Bray, D. F., Nakamura, K., Costerton, J. W., Wagenaar, E. B., 1974: Ultrastructure ofChlamydomonas eugametos as revealed by freeze-etching: cell wall, plasmalemma and chloroplast membrane. J. Ultrastruct. Res.47, 125–141.

    PubMed  Google Scholar 

  • Brown, R. M., Montezinos, D., 1976: Cellulose microfibrils visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Natl. Acad. Sci. U.S.A.73, 143–147.

    PubMed  Google Scholar 

  • Catt, J. W., Hills, G. J., Roberts, K., 1976: A structural glycoprotein containing hydroxyproline isolated from cell wall ofChlamydomonas reinhardii. Planta131, 165–171.

    Google Scholar 

  • — — —, 1978: Cell wall glycoproteins fromChlamydomonas reinhardii and their self-assembly. Planta138, 91–98.

    Google Scholar 

  • Dempsey, G. P., Bullivant, S., Watkins, W. B., 1973: Endothelial cell membranes. Polarity of particles as seen by freeze-fracturing. Science179, 190–192.

    PubMed  Google Scholar 

  • Ettl, H., 1970: Die GattungChloromonas gobi emend. Wille. Beih. Nova Hedwigia, Heft 34.

  • Giddings, T. H., Brower, D. L., Staehelin, L. A., 1980: Visualization of particle complexes in the plasma membrane ofMicrasterias denticulata, associated with the formation of cellulose fibrils in primary and secondary cell walls. J. Cell Biol.84, 327–339.

    PubMed  Google Scholar 

  • Gilula, N. B., Satir, P., 1971: Septate and gap junctions in molluscan gill epithelium. J. Cell Biol.51, 869–872.

    PubMed  Google Scholar 

  • ——, 1972: The ciliary necklace-A ciliary membrane specialization. J. Cell Biol.53, 494–509.

    PubMed  Google Scholar 

  • Gross, H., Kuebler, E., Bas, E., Moor, H., 1978: Decoration of specific binding sites on freeze-fractured membranes. J. Cell Biol.79, 646–657.

    PubMed  Google Scholar 

  • Gulik-Krzywicki T.,Costello M. J., 1977: Evaluation of freezing methods by low temperature X-ray diffraction (Bailey, G. W., ed.), pp. 330–333. 35th Ann. Proc. Electr. Microscopy. Boston Mass.

  • Henderson, R., Unwin, P. N. T., 1975: Three-dimensional model of purple membrane obtained by electron microscopy. Nature257, 28–31.

    PubMed  Google Scholar 

  • Herth, W., 1983: Arrays of plasma membrane “rosettes” involved in cellulose microfibril formation ofSpirogyra. Planta159, 347–356.

    Google Scholar 

  • Hills, G. J., Gurney-Smith, M., Roberts, K., 1973: Structure, composition and morphogenesis of the cell wall ofChlamydomonas reinhardi. II. Electron microscopy and optical diffraction analysis. J. Ultrastruct. Res.43, 179–192.

    PubMed  Google Scholar 

  • Hughes, J., McCully, M. E., 1975: The use of an optical brightener in the study of plant structure. Stain Technology50, 319–329.

    PubMed  Google Scholar 

  • Kiermayer, O., Staehelin, L. A., 1972: Feinstruktur von Zellwand und Plasmamembran beiMicrasterias denticulata (Breb.) nach Gefrierätzung. Protoplasma74, 227–237.

    Google Scholar 

  • —,Sleytr, U. B., 1979: Hexagonally ordered “rosettes” of particles in the plasma membrane ofMicrasterias denticulata and their significance for microfibril formation and orientation. Protoplasma101, 133–138.

    Google Scholar 

  • Lamport, D. T. A., 1980: Structure and function of plant glycoproteins. In: The biochemistry of plants, Vol. 3 (Stumpf, P. K., Conn, E. E., eds.), pp. 501–541. New York-London: Acad. Sci.

    Google Scholar 

  • Lefort-Tran, M., Gulik-Krzywicki, T., Plattner, H., Beisson, J., Wiessner, W., 1978: Influence of cryofixation procedures on organization and partition of intramembrane particles, p. 146 (Ninth Int. Cong. Elect. Microscopy, Toronto Vol. II).

    Google Scholar 

  • Maurer, A., Mühlethaler, K., 1981: Isolation and characterization of paracrystalline arrays of the plasma membrane of Baker's yeastSaccharomyces cerevisiae. Eur. J. Cell Biol.24, 216–225.

    PubMed  Google Scholar 

  • Merrett, M., 1969: Observations on the fine structure ofChlamydobotrys stellata with particular reference to its unusual chloroplast structure. Arch. Mikrobiol.65, 1–11.

    PubMed  Google Scholar 

  • Moor, H., Mühlethaler, K., 1963: Fine structure in frozen etched yeast cells. J. Cell Biol.17, 609–628.

    Google Scholar 

  • Pirson, A., Lorenzen, H., 1958: Ein endogener Zeitfaktor bei der Teilung vonChlorella. Z. Bot.46, 53–68.

    Google Scholar 

  • Plattner, H., Miller, F., Bachmann, L., 1973: Membrane specializations in the form of regular membrane-to-membrane attachment sites inParamecium. A correlated freeze-etching and ultrathin-sectioning analysis. J. Cell Sci.13, 687–719.

    PubMed  Google Scholar 

  • Pringsheim, E. G., 1960: Zur Systematik und Physiologie der Spondylomoraceen. Österr. Bot. Z.107, H 3/4, 425–438.

    Google Scholar 

  • —,Wiessner, W., 1960: Photoassimilation of acetate by green organisms. Nature188, 919–921.

    Google Scholar 

  • — —, 1961: Ernährung und Stoffwechsel vonChlamydobotrys (Volvocales) Arch. Mikrobiol.40, 231–246.

    Google Scholar 

  • Robenek, H., Melkonian, M., 1981: Sterol-deficient domains correlate with intramembrane particle arrays in the plasma membrane ofChlamydomonas reinhardii. Eur. J. Cell Biol.25, 258–264.

    PubMed  Google Scholar 

  • Roberts, K., Gurney-Smith, M., Hills, G. J., 1972: Structure, composition and morphogenesis of the cell wall ofChlamydomonas reinhardii. I. Ultrastructure and preliminary chemical analysis. J. Ultrastruct. Res.40, 599–613.

    PubMed  Google Scholar 

  • —,Hills, G. J., 1976: The crystalline glycoprotein cell wall of the green algaChlorogonium elongation: a structural analysis. J. Cell Sci.21, 59–71.

    PubMed  Google Scholar 

  • —, 1979: Hydroxyproline: its asymmetric distribution in a cell wall glycoprotein. Planta146, 275–279.

    Google Scholar 

  • —,Shaw, P. J., Hills, G. J., 1981: High resolution electron microscopy of glycoproteins: the crystalline cell wall ofLobomonas. J. Cell Sci.51, 295–321.

    PubMed  Google Scholar 

  • Robinson, D. G., Preston, R. D., 1972: Plasmalemma structure in relation to microfibril biosynthesis inOocystis. Planta104, 234–246.

    Google Scholar 

  • Sandrock, W., 1976: Vergleichende Untersuchungen an Stämmen der Volvocalen GrünalgeChlamydobotrys stellata. Doctor. Thesis, University of Göttingen.

  • Sardet, C., 1977: Ordered arrays of intramembrane particles on the surface of fish gills. Cell Biol. Intern. Reports1, 409–418.

    Google Scholar 

  • Satir, P., Gilula, N. B., 1973: The fine structure of membranes and intercellular communication in insects. Ann. Rev. Entomol.18, 143–166.

    Google Scholar 

  • -Satir, B., 1974: Design and function of site-specific particle arrays in the cell membrane. In: Control of proliferation in animal cells (Baserga, R.,Clarkson, B., eds.), pp. 233–249. Cold Spring Harbor Laboratory.

  • Von Sengbusch, P., Mix, M., Wachholz, I., Manshard, E., 1982: FITC-labeled lectins and calcofluor white ST as probes for the investigation of the molecular architecture of cell surfaces. Studies on conjugatophycean species. Protoplasma111, 38–52.

    Google Scholar 

  • —,Müller, U., 1983: Distribution of glycoconjugates at algal cell surfaces as monitored by FITC-conjugated lectins. Studies on selected species fromCyanophyta, Pyrrhophyta, Raphidophyta, Euglenophyta, Chromophyta andChlorophyta. Protoplasma114, 103–113.

    Google Scholar 

  • Sleytr, U. B., Robards, A. W., 1982: Understanding the artefact problem in freeze-fracture replication: a review. J. Microscopy126, Pt 1, 101–122.

    Google Scholar 

  • Sosinsky, G., Schenkman, R., Glaeser, R., 1980: Enlarged crystalline patches on the plasma membrane of yeast protoplasts. In: Thirty-eight annual meeting of the Electron Microscopy Society of America (Bailey, G. W., ed.), pp. 686–687. Baton Rouge: Claitor's Publishing Division.

    Google Scholar 

  • Speth, V., Wunderlich, F., 1972: Evidence for different dispositions of particles associated with freeze-etched membranes. Protoplasma75, 341–344.

    PubMed  Google Scholar 

  • Staehelin, L. A., 1974: Structure and function of intercellular junctions. Int. Rev. Cytol.39, 191–278.

    PubMed  Google Scholar 

  • —,Pickett-Heaps, J. D., 1975: The ultrastructure ofScenedesmus (Chlorophyceae). J. Phycol.11, 163–202.

    Google Scholar 

  • —,Giddings, T. H., 1982: Membrane-mediated control of cell wall microfibrillar order. In: Developmental order: its origin and regulation (Subtelny, S., Green, P. B., eds.), pp. 133–147. New York: Allan Liss.

    Google Scholar 

  • Weiss, R. L., Goodenough, D. A., Goodenough, U. W., 1977: Membrane particle arrays associated with the basal body and with contractile vacuole secretion inChlamydomonas. J. Cell Biol.72, 133–143.

    PubMed  Google Scholar 

  • Wood, R. L., 1974: A closely packed array of membrane intercalated particles at the free surface ofHydra. J. Cell Biol.62, 679–694.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to our late colleague and friend Dr.Yvonne Henry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, Y., Pouphile, M., Gulik-Krzywicki, T. et al. Freeze-fracture study of ordered arrays of particles in the plasma membrane ofChlamydobotrys stellata Korsch. (Volvocales). Protoplasma 126, 100–113 (1985). https://doi.org/10.1007/BF01287677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01287677

Keywords

Navigation