Skip to main content
Log in

Fine structure of the chloroplast membranes ofEuglena gracilis as revealed by freeze-cleaving and deep-etching techniques

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The chloroplasts ofEuglena gracilis have been examined by freeze-cleaving and deep-etching techniques.

The two chloroplast envelope membranes exhibit distinct fracture faces which do not resemble any of the thylakoid fracture faces.

Freeze-cleaved thylakoid membranes reveal four split inner faces. Two of these faces correspond to stacked membrane regions, and two to unstacked regions. Analysis of particle sizes on the exposed faces has revealed certain differences from other chloroplast systems, which are discussed. Thylakoid membranes inEuglena are shown to reveal a constant number of particles per unit area (based on the total particle number for both complementary faces) whether they are stacked or unstacked.

Deep-etchedEuglena thylakoid membranes show two additional faces, which correspond to true inner and outer thylakoid surfaces. Both of these surfaces carry very uniform populations of particles. Those on the external surface (the A surface) are round and possess a diameter of approximately 9.5 nm. Those on the inner surface (the D surface) appear rectangular (as paired subunits) and measure approximately 10 nm in width and 18 nm in length. Distribution counts of particles show that the number of particles per unit area revealed by freeze-cleaving within the thylakoid membrane approximates closely the number of particles exposed on the external thylakoid surface (the A surface) by deep-etching. The possible significance of this correlation is discussed. The distribution of rectangular particles on the inner surface of the thylakoid sac (D surface) seems to be the same in both stacked and unstacked membrane regions. We have found no correlation between the D surface particles and any clearly defined population of particles on internal, freeze-cleaved membrane faces. These and other observations suggest that stacked and unstacked membranes are similar, if not identical in internal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arntzen, C. J., R. A. Dilley, andF. L. Crane, 1969: A comparison of chloroplast membrane surfaces visualized by freeze-etch and negative staining techniques; and ultrastructural characterization of membrane fractions obtained from digitonin-treated chloroplasts. J. Cell Biol.43, 16–31.

    Google Scholar 

  • Ben Shaul, Y., J. A. Schiff, andH. T. Epstein, 1964: Studies of chloroplast development inEuglena. VII. Fine structure of the developing plastid. Plant Physiol.39, 231–240.

    Google Scholar 

  • Branton, D., 1966: Fracture faces of frozen membranes. Proc. nat. Acad. Sci. (USA.)55, 1048–1056.

    Google Scholar 

  • —, andR. B. Park, 1967: Subunits in chloroplast lamellae. J. Ultrastruct. Res.19, 283–303.

    Google Scholar 

  • Epstein, H. T., andJ. A. Schiff, 1961: Studies of chloroplast development inEuglena. 4. Electron and fluorescence microscopy of the proplastid and its development into a mature chloroplast. J. Protozool.8, 427–432.

    Google Scholar 

  • Frey-Wyssling, A., andE. Steinmann, 1953: Ergebnisse der Feinbauanalyse der Chloroplasten. Vjschr. naturforsch. Ges. Zürich98, 20–29.

    Google Scholar 

  • Goodenough, U. W., andL. A. Staehelin, 1971: Structural differentiation of stacked and unstacked chloroplast membranes. J. Cell Biol.48, 594–619.

    Google Scholar 

  • Greenblatt, C. L., andJ. A. Schiff, 1959: A pheophytin-like pigment in dark-adaptedEuglena gracilis. J. Protozool.6, 23–28.

    Google Scholar 

  • Hall, D. O., H. Edge, andM. Kalina, 1971: The site of ferricyanide photoreduction in the lamellae of isolated spinach chloroplasts: A cytochemical study. J. Cell Sci.9, 289–303.

    Google Scholar 

  • Hodge, A. J., 1959: Fine structure of lamellar systems as illustrated by chloroplasts. Rev. Mod. Physics31, 331–341.

    Google Scholar 

  • Holt, S. C., andA. I. Stern, 1970: The effect of 3-(3,4-dichlorophenyl)-l,l-dimethylurea on chloroplast development and maintenance inEuglena gracilis. Plant Physiol.45, 475–483.

    Google Scholar 

  • Howell, S. H., andE. N. Moudrianakis, 1967 a: Hill reaction site in chloroplast membranes: Non-participation of the quantosome particle in photoreduction. J. molec. Biol.27, 323–333.

    Google Scholar 

  • — —, 1967 b: Function of the “quantosome” in photosynthesis: Structure and properties. Proc. nat. Acad. Sci. (USA.)58, 1261–1268.

    Google Scholar 

  • Kahn, A., andD. von Wettstein, 1961: Macromolecular physiology of plastids. II. Structure of isolated spinach chloroplasts. J. Ultrastruct. Res.5, 557–574.

    Google Scholar 

  • Kannangara, C., D. van Wyk, andW. Menke, 1970: Immunological evidence for the presence of latent Ca++ dependent ATPase and carboxydismutase on the thylakoid surface. Z. Naturforsch.25 b, 613–618.

    Google Scholar 

  • Klein, S., J. A. Schiff, andA. W. Holowinsky, 1971: Events surrounding the early development ofEuglena chloroplasts. 2. Normal development of fine structure and the consequences of preillumination. Plant Physiol.45, 339–347.

    Google Scholar 

  • Moor, H., andK. Mühlethaler, 1963: Fine structure in frozen-etched yeast cells. J. Cell Biol.17, 609–628.

    Google Scholar 

  • Mühlethaler, K., H. Moor, andJ. W. Szarkowski, 1965: The ultrastructure of the chloroplast lamellae. Planta.67, 305–323.

    Google Scholar 

  • Oda, T., andH. Huzisige, 1965: Macromolecular repeating particles in the chloroplast membrane. Exp. Cell Res.37, 481–484.

    Google Scholar 

  • Park, R. B., 1965: Substructure of chloroplast lamellae. J. Cell Biol.27, 151–161.

    Google Scholar 

  • —, andJ. Biggins, 1964: Quantasome: Size and composition. Science (N.Y.)144, 1009–1011.

    Google Scholar 

  • —, andA. O. Pfeifhofer, 1968: The continued presence of quantasomes in ethylenediaminetetraacetate washed lamellae. Proc. nat. Acad. Sci. (USA.)60, 337–343.

    Google Scholar 

  • — —, 1969: The effect of ethylene diaminetetraacetate washing on the structure of spinach thylakoids. J. Cell Sci.5, 313–319.

    Google Scholar 

  • Pinto da Silva, P., andD. Branton, 1970: Membrane splitting in freeze-etching. Covalently bound ferritin as a membrane marker. J. Cell Biol.45, 598–605.

    Google Scholar 

  • Sane, P. V., D. J. Goodchild, andR. B. Park, 1970: Characterization of chloroplast photosystems 1 and 2 separated by a non-detergent method. Biochim. Biophys. Acta.216, 162–178.

    Google Scholar 

  • Schwelitz, F. O., R. A. Dilley, andF. L. Crane, 1972: Structural characteristics of a photosynthetic mutant ofEuglena gracilis blocked in photosystem II. Plant Physiol.50, 166–170.

    Google Scholar 

  • Staehelin, L. A., F. J. Chlapowski, andM. A. Bonneville, 1972: Lumenal plasma membrane of the urinary bladder. J. Cell Biol.53, 73–91.

    Google Scholar 

  • Tillach, T. W., andV. T. Marchesi, 1970: Demonstration of the outer surface of freezeetched red blood cell membranes. J. Cell Biol.45, 649–653.

    Google Scholar 

  • Weier, T. E., andA. A. Benson, 1967: The molecular organization of chloroplast membranes. Amer. J. Bot.54, 389–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, K.R., Staehelin, L.A. Fine structure of the chloroplast membranes ofEuglena gracilis as revealed by freeze-cleaving and deep-etching techniques. Protoplasma 77, 55–78 (1973). https://doi.org/10.1007/BF01287292

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01287292

Keywords

Navigation