Cubic Ramanujan graphs

Abstract

A fimily of cubic Ramanujan graph is explicitly constructed. They are realized as Cayley graphs of a certain free group acting on the 3-regular tree; this group is obtained from a definite quaternion algebra that splits at the prime 2 and has a maximal order of class number 1.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    T. Apostol:Introduction to analytic number theory, Springer-Verlag, 1976.

  2. [2]

    B. Bollobás:Graph theory — an introductory course, Springer-Verlag GTM 63, 1979.

  3. [3]

    M. Eichler:Lectures on modular correspondences, Tata Institute of Fundamental Research, Bombay, 1955–56.

    Google Scholar 

  4. [4]

    M. Eichler: The basis problem for modular forms and the traces of the Hecke operators,Modular Functions of One Variable, Springer-Verlag Lecture Notes in Math. 320, 1973.

  5. [5]

    M. Eichler: Quaternäre quadratische Formen und die Riemannsche Vermutung für die kongruentz Zeta Funktion,Archiv. der Math. V (1954), 355–366.

    Google Scholar 

  6. [6]

    E. Hecke: Analytische arithmetik der positiven quadratic formen,Collected Works, pp. 789–898, Gottingen, 1959.

  7. [7]

    J. Igusa: Fibre systems of Jacobian varieties III,American Jnl. of Math. 81 (1959), 453–476.

    Google Scholar 

  8. [8]

    A. Lubotzky:Discrete groups, expanding graphs and invariant measures, NSF-CBMS Regional Conference Lecture Notes, U. of Oklahoma, 1989.

  9. [9]

    A. Lubotzky, R. Phillips andP. Sarnak: Ramanujan graphs,Combinatorica 8 (1988), 261–277.

    Google Scholar 

  10. [10]

    A. Lubotzky, R. Phillips andP. Sarnak: Hecke operators and distributing points onS 2, parts I and II,Comm. Pure and Applied Math. 39 (1986), 149–186,40 (1987), 401–420.

    Google Scholar 

  11. [11]

    Malisev: On the representation of integers by positive definite forms,Math. Steklov 65 (1962).

  12. [12]

    G. A. Margulis: Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators,Prob. of Info. Trans. (1988) 39–46.

  13. [13]

    A. Ogg:Modular forms and Dirichlet series, W. A. Benjamin Enc., New York, 1977.

    Google Scholar 

  14. [14]

    R. Rankin:Modular forms and functions, Cambridge University Press, 1977.

  15. [15]

    P. Sarnak:Some applications of modular forms, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  16. [16]

    B. Schoeneberg:Elliptic modular functions, Springer Verlag, 1974.

  17. [17]

    J. P. Serre:Trees, Springer Verlag, 1980.

  18. [18]

    M. Vigneras:Arithmetique de algebras de quaternions, Springer-Verlag Lecture Notes in Math. 800 1980.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chiu, P. Cubic Ramanujan graphs. Combinatorica 12, 275–285 (1992). https://doi.org/10.1007/BF01285816

Download citation

AMS Subject Classification code (1991)

  • 05 C 35