Abstract
LetV be a disjoint union ofr finite setsV 1,...,V r (“colors”). A collectionT of subsets ofV iscolorful if each member ifT contains at most one point of each color. Ak-dimensional colorful tree is a colorful collectionT of subsets ofV, each of sizek+1, such that if we add toT all the colorful subsets ofV of sizek or less, we get aQ-acyclic simplicial complex Δ T
We count (using the Binet-Cauchy theorem) thek-dimensional colorful trees onV (for allk), where each treeT is counted with weight\(|\tilde H_{k - 1} (\Delta _T )|^2 (\tilde H_* = reduced homology)\). The result confirms, in a way, a formula suggested by Bolker. (fork-r−1). It extends, on one hand, a result of Kalai on weighted counting ofk-dimensional trees and, on the other hand, enumeration formulas for multi-partite (1-dimensional) trees. All these results are extensions of Cayley's celebrated treecounting formula, now 100 years old.
This is a preview of subscription content, access via your institution.
References
- [1]
T. L. Austin: The enumeration of point labelled chromatic graphs and trees,Canad. J. of Math. 12 (1960), 535–545.
- [2]
E. D. Bolker: Simplicial geometry and transportation polytopes,Trans. AMS 217 (1976), 121–142.
- [3]
A. Cayley: A theorem on trees,Quarterly J. of Math. 23 (1889), 376–378.
- [4]
M. Fiedler andJ. Sedláček: O W-basich orientovaných grafu,Časopis pro pěstováni matematiky 83 (1958), 214–225.
- [5]
F. R. Gantmacher:The Theory of Matrices, Chelsea, 1960.
- [6]
G. Kalai: Enumeration ofQ-acyclic simplicial complexes,Israel J. of Math. 45 (1983), 337–351.
- [7]
J. W. Moon: Counting Labelled Trees,Canadian Mathematical Congress, (1970).
- [8]
J. R. Munkres:Elements of Algebraic Topology, Benjamin/Cummings, 1984.
- [9]
E. H. Spanier:Algebraic Topology, McGraw-Hill, 1966.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Adin, R.M. Counting colorful multi-dimensional trees. Combinatorica 12, 247–260 (1992). https://doi.org/10.1007/BF01285814
Received:
Issue Date:
AMS subject classification code (1991)
- 05 C 50
- 05 C 05
- 05 C 30
- 05 C 65
- 15 A 18