Counting colorful multi-dimensional trees

Abstract

LetV be a disjoint union ofr finite setsV 1,...,V r (“colors”). A collectionT of subsets ofV iscolorful if each member ifT contains at most one point of each color. Ak-dimensional colorful tree is a colorful collectionT of subsets ofV, each of sizek+1, such that if we add toT all the colorful subsets ofV of sizek or less, we get aQ-acyclic simplicial complex Δ T

We count (using the Binet-Cauchy theorem) thek-dimensional colorful trees onV (for allk), where each treeT is counted with weight\(|\tilde H_{k - 1} (\Delta _T )|^2 (\tilde H_* = reduced homology)\). The result confirms, in a way, a formula suggested by Bolker. (fork-r−1). It extends, on one hand, a result of Kalai on weighted counting ofk-dimensional trees and, on the other hand, enumeration formulas for multi-partite (1-dimensional) trees. All these results are extensions of Cayley's celebrated treecounting formula, now 100 years old.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    T. L. Austin: The enumeration of point labelled chromatic graphs and trees,Canad. J. of Math. 12 (1960), 535–545.

    Google Scholar 

  2. [2]

    E. D. Bolker: Simplicial geometry and transportation polytopes,Trans. AMS 217 (1976), 121–142.

    Google Scholar 

  3. [3]

    A. Cayley: A theorem on trees,Quarterly J. of Math. 23 (1889), 376–378.

    Google Scholar 

  4. [4]

    M. Fiedler andJ. Sedláček: O W-basich orientovaných grafu,Časopis pro pěstováni matematiky 83 (1958), 214–225.

    Google Scholar 

  5. [5]

    F. R. Gantmacher:The Theory of Matrices, Chelsea, 1960.

  6. [6]

    G. Kalai: Enumeration ofQ-acyclic simplicial complexes,Israel J. of Math. 45 (1983), 337–351.

    Google Scholar 

  7. [7]

    J. W. Moon: Counting Labelled Trees,Canadian Mathematical Congress, (1970).

  8. [8]

    J. R. Munkres:Elements of Algebraic Topology, Benjamin/Cummings, 1984.

  9. [9]

    E. H. Spanier:Algebraic Topology, McGraw-Hill, 1966.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adin, R.M. Counting colorful multi-dimensional trees. Combinatorica 12, 247–260 (1992). https://doi.org/10.1007/BF01285814

Download citation

AMS subject classification code (1991)

  • 05 C 50
  • 05 C 05
  • 05 C 30
  • 05 C 65
  • 15 A 18