Skip to main content
Log in

Cytochemical and biochemical observations on the cell wall of the spore ofGlomus epigaeum

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The cell wall of the spore ofGlomus epigaeum Daniels and Trappe, which has fibrillar subunits regularly arranged in arcs, was studied ultrastructurally and biochemically.

The periodic acid/thiocarbohydrazide/silver proteinate (PATAg) reaction for polysaccharide location (Thiéry 1967) and the silver methenamine reaction for protein location (Swift 1968) were performed on whole spores, progressively alkaline-extracted and autoclaved spores, and untreated and alkaline-extracted cell wall fractions. The cytochemical results and those obtained from frozen sections indicated that the fibrils forming the main structure of the outer and inner wall consist of chitin. Quantitative determinations showed that chitin is the most important component (47%) of the alkali-insoluble residue and represents 27.2% of the whole cell wall fraction. It occurs predominantly as the acetylated form. Cytochemical and biochemical observations showed that the matrix surrounding the fibrils is made of alkali-soluble, PATAg positive polysaccharides (4.98% of the whole cell wall fraction). Monomers were identified by gas liquid chromatography as being γ-lactone of glucuronic acid, and glucose, rhamnose and mannose. Alkali-soluble proteins are an important part of the matrix, being spread mostly throughout the inner wall and constituting a large portion (55.1 %) of the alkali-soluble fraction.

From the results we derive a model in which the chemical components are interconnected to build up a macromolecular network, in agreement with electron-microscopic observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartnicki-Garcia, S., 1968: Cell wall, chemistry, morphogenesis, and taxonomy of fungi. A. Rev. Microbiol.22, 87–108.

    Google Scholar 

  • -Davis, L. L., 1983: Chitosan synthesis inMucor rouxii: mechanism and regulation. Abstracts from “The Third International Mycological Congress” 28th August–3rd September 1983, Tokyo, Japan, p. 15.

  • —,Lindberg, B., 1972: Partial characterization of mucoran: the glucuro-mannan component. Carbohyd. Res.23, 75–85.

    Google Scholar 

  • —,Nickerson, W. L., 1962: Isolation, composition and structure of cell walls of filamentous and yeast-like forms ofMucor rouxii. Biochim. biophys. Acta58, 102–119.

    PubMed  Google Scholar 

  • Blackwell, J., 1982: The macromolecular organization of cellulose and chitin. In: Cellulose and other natural polymer systems (Malcom Brown, R., Jr., ed.), pp. 403–428. New York-London: Plenum Press.

    Google Scholar 

  • Bonfante-Fasolo, P., 1982: Cell wall architectures in a mycorrhizal association as revealed by cryoultramicrotomy. Protoplasma111, 113–120.

    Google Scholar 

  • —,Grippiolo, R., 1982: Ultrastructural and cytochemical changes in the wall of a vesicular-arbuscular mycorrhizal fungus during symbiosis. Can. J. Bot.60, 2303–2312.

    Google Scholar 

  • —,Vian, B., 1984: Wall texture in the spore of a vesicular-arbuscular mycorrhizal fungus. Protoplasma120, 51–60.

    Google Scholar 

  • Blumenkrantz, N., Asboe-Hansen, G., 1973: New method for quantitative determination of uronic acids. Analyt. Biochem.54, 484–489.

    PubMed  Google Scholar 

  • Buczacki, S. T., Moxham S. E., 1983: Structure of the resting spore wall ofPlasmodiophora brassicae revealed by electron microscopy and chemical digestion. Trans. Brit. Mycol. Soc.81, 221–231.

    Google Scholar 

  • Cederberg, B. M.,Gray, G. R.: N-acetyl-D-glucosamine binding lectins, a model system for the study of binding specificity. Analyt. Biochem.99, 221–230.

  • Datema, R., van den Hende, H., Wessels, J. G. H., 1977: The hyphal wall ofMucor mucedo. I. Polyanionic Polymers. Eur. J. Biochem.80, 611–619.

    PubMed  Google Scholar 

  • — — —, 1977: The hyphal wall ofMucor mucedo. II. Hexosamine-containing polymers. Eur. J. Biochem.80, 621–626.

    PubMed  Google Scholar 

  • Dubois, M., Gilles, N. A., Hamilton, J., Rebers, P. A., Smith, F., 1956: Colorimetric method for determination of sugars and related substances. Analyt. Chem.28, 350–356.

    Google Scholar 

  • Dutton, G. C. S., 1973: Gas liquid chromatography. II. Hydrolysis of polysaccharides. In: Advances in carbohydrate chemistry and biochemistry (Tipson, R. S., Horton, D., eds.), pp. 15–23. New York: Academic Press.

    Google Scholar 

  • Gow, N. A. R., Gooday, G. W., 1983: Ultrastructure of chitin in hyphae ofCandida albicans and other dimorphic and mycelial fungi. Protoplasma115, 52–58.

    Google Scholar 

  • Hegnauer, H., Hohl, H. R., 1978: Cell wall architecture of sporangia, chlamydomonads, oogonia and oospores inPhytophthora. Exp. Mycology2, 216–233.

    Google Scholar 

  • Knight, D. P., Lewis, P. R., 1977: General cytochemical methods. In: Staining methods for sectioned material (Lewis, P. R., Knight, D. P., eds.), pp. 77–135. Amsterdam-New York-Oxford: North-Holland Company Publishing.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Lewis Farr, A., Randall, R. J., 1951: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 266–275.

    Google Scholar 

  • Moxham, S. E., Buczacki, S. T., 1983: Chemical composition of the resting spore wall ofPlasmodiophora brassicae. Trans. Brit. Mycol. Soc.80, 297–304.

    Google Scholar 

  • Neville, A. C., Luke, B. M., 1969: A two system model for chitin-protein complexes in insect cuticles. Tissue Cell1, 689–707.

    Google Scholar 

  • Pearlmutter, N. L., Lembi, C. A., 1978: Localization of chitin in algal and fungal cell walls by light and electron microscopy. J. Histochem. Cytochem.26, 782–791.

    PubMed  Google Scholar 

  • Pollack, J. H., Lange, C. F., Hashimoto, T., 1983: “Nonfibrillar” chitin associated with walls and septa ofTrichophyton mentagrophytes arthrospores. J. Bacteriol.154, 965–975.

    PubMed  Google Scholar 

  • Rast, D., Hollenstein, G. O., 1977: Architecture of theAgaricus bisporus spore wall. Can. J. Bot.55, 2251–2262.

    Google Scholar 

  • Ride, J. P., Drysdale, R. B., 1972: A rapid method for the chemical estimation of filamentous fungi. Physiol. Plant Pathol.2, 7–15.

    Google Scholar 

  • Robinson, D. G., Quader, H., 1981: Cell wall 81. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH.

    Google Scholar 

  • Scannerini, S., Bonfante-Fasolo, P., 1979: Ultrastructural cytochemical demonstration of polysaccharides and proteins within the host-arbuscule interfacial matrix in an endomycorrhiza. New Phytol.83, 87–94.

    Google Scholar 

  • Sjøstrand, F. S., Bernhard, W., 1976: The structure of mitochondrial membranes in frozen sections. J. Ultrastruct. Res.56, 233–246.

    PubMed  Google Scholar 

  • Spurr, A. R., 1969: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.

    PubMed  Google Scholar 

  • Stirling, J. L., Cook, G. A., Pope, A. M. S., 1979: Chitin and its degradation. In: Fungal walls and hyphal growth (Burnett, J. H., Trinci, A. P. J., eds.), pp. 169–188. Cambridge-London-New York-Melbourne: Cambridge University Press.

    Google Scholar 

  • Sweeley, C. C., Bentley, R., Makita, M., Wells, W. W., 1963: Gas liquid chromatography of trimethylsilyl derivates of sugars and related substances. J. Americ. chem. Soc.85, 2497–2507.

    Google Scholar 

  • Swift, J. A., 1968: The electron histochemistry of cystine-containing proteins in thin transverse sections of human air. J. R. Microscopy Soc.88, 449–460.

    Google Scholar 

  • Tanner, W., Loewus, F. A., 1981: Plant carbohydrates. II. Extracellular carbohydrates. Encyclopedia of plant physiology. New series Vol. 13 B. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Thiéry, J. P., 1967: Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J. Microscopie (Paris)6, 987–1018.

    Google Scholar 

  • Van der, Valk, P., Marchant, R., Wessels, J. G. H., 1977: Ultrastructural localization of polysaccharides in the wall and septum of the basidiomyceteSchizophyllum commune. Experimental Mycology1, 69–82.

    Google Scholar 

  • Vian, B., Brillouet, J. M., Satiat-Jeunemaitre, N., 1983: Ultrastructural visualization of xylans in cell walls of hardwood by means of xilanase-gold complex. Biol. Cell.49, 179–182.

    Google Scholar 

  • Wagner, W. D., 1979: A more sensitive assay discriminating galactosamine and glucosamine in mixtures. Analyt. Biochem.94, 394–396.

    PubMed  Google Scholar 

  • Wejman, A. C. M., Meuzelaar, L. C., 1979: Biochemical contribution to the taxonomic status of theEndogonaceae. Can. J. Bot.57, 284–291.

    Google Scholar 

  • Wessels, J. G. H., Sietsma, J. H., 1981: Fungal cell walls: a survey. In: Plant carbohydrates. II. Extracellular carbohydrates. Encyclopedia of plant physiology. New Series Vol. 13 B (Tanner, W., Loewus, F. A., eds.), pp. 352–394. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonfante-Fasolo, P., Grippiolo, R. Cytochemical and biochemical observations on the cell wall of the spore ofGlomus epigaeum . Protoplasma 123, 140–151 (1984). https://doi.org/10.1007/BF01283584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01283584

Keywords

Navigation