Advertisement

Protoplasma

, Volume 130, Issue 1, pp 41–50 | Cite as

Ultrastructural aspects of a glycerinated model ofAmoeba proteus

  • S. Sonobe
  • K. Kuroda
Article

Summary

Two types of filamentous structures were observed by electron microscopy in both non-glycerinated cell and glycerinated model ofAmoeba proteus. One was a thin filament 6–8 nm in diameter and the other was a thick rod-shaped filament 30 nm in diameter and 0.6 μm long. Upon addition of Mg-ATP at all Ca2+ concentration examined, these filaments in the glycerinated model aggregated around the nucleus, forming thick filament clusters from which thin filaments radiated. After that, at 10−8 M Ca2+, the filament layer containing thick and thin filaments separated from the plasma membrane, surrounded the granular cytoplasm and contracted centripetally. At 10−6 M Ca2+, a thin filament meshwork containing thick filaments was seen in the area where streaming occurred. At 10−4 M Ca2+, the filament aggregates formed by the initial contraction around the nucleus disappeared, and few thin filaments were observed in the cytoplasm 10 minutes after the reactivation.

Keywords

Amoeba Filament system Glycerinated model Ultrastructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. D., 1961: A new theory of amoeboid movement and protoplasmic streaming. Exp. Cell Res. Suppl.8, 17–31.Google Scholar
  2. Allen, R. D., 1973: Biophysical aspects of pseudopodium formation and retraction. In: The Biology of Amoeba (Joen, K. M., ed.), pp. 201–247. New York-London: Academic Press.Google Scholar
  3. —,Cooledge, J. W., Hall, P. T., 1960: Streaming in cytoplasm dissociated from the giant amoeba,Chaos chaos. Nature187, 896–899.PubMedGoogle Scholar
  4. Comly, L. T., 1973: Microfilaments inChaos carolinensis. Membrane association, distribution, and heavy meromyosin binding in the glycerinated cell. J. Cell Biol.58, 230–237.Google Scholar
  5. Craig, S. W., Pollard, T. D., 1982: Actin-binding proteins. Trends Biochem. Sci.7, 88–92.Google Scholar
  6. Ebashi, S., 1961: Calcium binding activity of vesicular relaxing factor. J. Biochem.50, 236–244.Google Scholar
  7. Gicquaud, C., Couillard, P., 1970: Préservation des mouvements dans le cytoplasme démembrané d'Amoeba proteus. Cytobiologie1, 460–467.Google Scholar
  8. Godt, R. E., 1974: Calcium-activated tension of skinned muscle fibers of the frog. Dependence on magnesium adenosine triphosphate concentration. J. gen. Physiol.63, 722–759.PubMedGoogle Scholar
  9. Hasegawa, T., Takahashi, S., Hayashi, H., Hatano, S., 1980: Fragmin: A calcium ion sensitive regulatory factor on the formation of actin filaments. Biochemistry19, 2677–2683.PubMedGoogle Scholar
  10. Hauser, H., 1978: Demonstration of membrane-associated and oriented microfilaments inAmoeba proteus by means of a Schiff base/glutaraldehyde fixative. Cytobiologie18, 95–106.PubMedGoogle Scholar
  11. Holberton, D. U., Preston, T. M., 1970: Arrays of thick filaments in ATP-activatedAmoeba model cells. Exp. Cell Res.62, 473–477.PubMedGoogle Scholar
  12. Ishikawa, H., Bischoff, R., Holtzer, H., 1969: Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol.43, 312–328.PubMedGoogle Scholar
  13. Korn, E. D., 1982: Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol. Rev.62, 672–737.PubMedGoogle Scholar
  14. Kuroda, K., Sonobe, S., 1981: Reactivation of a glycerinated model ofAmoeba. Protoplasma109, 127–142.Google Scholar
  15. Lehrer, S. S., 1981: Damage to actin filaments by glutaraldehyde: protection by tropomyosin. J. Cell Biol.90, 459–466.PubMedGoogle Scholar
  16. Maruta, H., Isenberg, G., Schreckenbach, T., Hallmann, R., Risse, G., Shibayama, T., Hesse, J., 1983a: Ca2+-dependent actin-binding phosphoprotein inPhysarum polycephalum. Ca2+/actin-dependent inhibition of its phosphorylation. J. biol. Chem.258, 10144–10150.PubMedGoogle Scholar
  17. — —, 1983b: Ca2+-dependent actin-binding phosphoprotein inPhysarum polycephalum. II. Ca2+-dependent F-actin-capping activity of subunit a and its regulation by phosphorylation of subunit b. Ibid. 10151–10158.PubMedGoogle Scholar
  18. Maupin-Szamier, P., Pollard, T. D., 1978: Actin filament destruction by osmium tetroxide. J. Cell Biol.77, 837–852.PubMedGoogle Scholar
  19. Nachmias, V. T., 1964: Fibrillar structures in the cytoplasm ofChaos chaos. J. Cell Biol.23, 183–188.Google Scholar
  20. Paulin-Levasseur, M., Gicquaud, C., 1981: Observation des structures contractiles dans le cytoplasme démembrané d'Amoeba proteus après traitment à la phalloïdine. Eur. J. Cell Biol.26, 144–149.PubMedGoogle Scholar
  21. — —, 1984: Effets du pH et de l'ATP sur le cytoplasme d'Amoeba proteus: relation entre la motilité du cytoplasme et l'état de polymerisation de l'actine. Eur. J. Cell Biol.33, 29–36.PubMedGoogle Scholar
  22. Pollard, T. D., 1975: Functional implications of the biochemical and structural properties of cytoplasmic contractile proteins. In: Molecules and Cell Movement (Inoue, S., Stephens, R. E., eds.), pp. 259–286. New York: Raven Press.Google Scholar
  23. Pollard, T. D., Ito, S., 1970: Cytoplasmic filaments ofAmoeba proteus. I. The role of filaments in consistency changes and movement. J. Cell Biol.46, 267–289.Google Scholar
  24. —,Korn, E. D., 1971: Filaments ofAmoeba proteus. II. Binding of heavy meromyosin by thin filaments in motile cytoplasmic extracts. J. Cell Biol.48, 216–219.PubMedGoogle Scholar
  25. Reynolds, E. S., 1963: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–212.PubMedGoogle Scholar
  26. Rinaldi, R. A., Herebenda, B., 1975: Oriented thick and thin filaments inAmoeba proteus. J. Cell Biol.66, 193–198.PubMedGoogle Scholar
  27. Seagull, R. W., Heath, I. B., 1979: The effects of tannic acid on thein vivo preservation of microfilaments. Eur. J. Cell Biol.20, 184–188.PubMedGoogle Scholar
  28. Spurr, A. R., 1969: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.PubMedGoogle Scholar
  29. Stockem, W., Hoffmann, H-U., Gawlitta, W., 1982: Spatial organization and fine structure of the cortical filament layer in normal locomotingAmoeba proteus. Cell Tissue Res.221, 505–519.PubMedGoogle Scholar
  30. Stockem, W., Naib-Majani, W., Wohlfarth-Bottermann, K.-E., Osborn, M., Weber, K., 1983: Pinocytosis and locomotion of amoebae. XIX. Immunocytochemical demonstration of actin and myosin inAmoeba proteus. Eur. J. Cell Biol.29, 171–178.PubMedGoogle Scholar
  31. —,Weber, K., Wehland, J., 1978: The influence of microinjected phalloidin on locomotion, protoplasmic streaming and cytoplasmic organization inAmoeba proteus andPhysarum polycephalum. Cytobiologie18, 114–131.PubMedGoogle Scholar
  32. Szent-Győrgyi, A. G., 1953: Meromyosins, the subunits of myosin. Arch. Biochem. Biophys.42, 305–320.PubMedGoogle Scholar
  33. Taylor, D. L., Condeelis, J. S., Moor, P. L., Allen, R. D., 1973: The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J. Cell Biol.59, 378–394.PubMedGoogle Scholar
  34. Toma, M., Berl, S., 1982: Structural characterization of myosin from bovine brain. Eur. J. Cell Biol.28, 122–129.PubMedGoogle Scholar
  35. Yin, H., Stossel, T. P., 1979: Controle of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature281, 583–586.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • S. Sonobe
    • 1
  • K. Kuroda
    • 1
  1. 1.Department of Biology, Faculty of ScienceOsaka UniversityOsakaJapan

Personalised recommendations