Skip to main content
Log in

Brefeldin A induces callose formation in onion inner epidermal cells

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The antibiotic fungal toxin brefeldin A (BFA) causes synthesis of additional cell wall material in adult differentiated onion inner epidermal cells at concentrations of 5–30 μg/ml. This tertiary wall contains callose and is layered on the secondary cellulosic wall in a time- and dose-dependent manner. Initially, callose is found in pit fields in the form of small vesicular patches. With time and dose, depositions grow in size and form large plugs invaginating into the cell, where the adjacent cytoplasm forms bulky accumulations and contains many organelles including endomembranes. Within the cytoplasm, BFA exerts the characteristic morphological effects on the secretory system including changes of the Golgi stacks, formation of large vesicles, and proliferation of dilated cisternae of the endoplasmic reticulum. Higher concentrations of BFA (60 μg/ml) lead to disintegration of the Golgi apparatus; they have no effects on the cell wall, no callose synthesis occurs. We conclude from these observations that BFA has two independent targets in onion cells. BFA acts on the plasma membrane, hence operating as an elicitor of plant defense reactions and thus activates callose synthesis. BFA acts also on the membranes of the secretory system and influences budding and fusion of vesicles at the endoplasmic reticulum and at the dictyosomes. These two mechanisms occur in parallel, suggesting that the secretory system still can play its presumed role in callose synthesis. Only when dictyosomes are completely disintegrated, no more callose is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BFA:

Brefeldin A

PM:

plasma membrane

GA:

Golgi apparatus

ER:

endoplasmic reticulum

GS:

glucan synthetase

References

  • Aducci P, Ballio A, Marra M (1997) Phytotoxins as molecular signals. In: Aducci P (ed) Signal transduction in plants. Birkhäuser, Basel, pp 83–105

    Google Scholar 

  • Akashi T, Kanbe T, Tanaka K (1997) Localized accumulation of cell wall mannoproteins and endomembranes induced by brefeldin A in hyphal cells of the dimorphic yeastCandida albicans. Protoplasma 197:45–56

    Google Scholar 

  • Bolard J (1986) How do polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta 864: 257–304

    PubMed  Google Scholar 

  • Bourett TM, Howard RJ (1996) Brefeldin A-induced structural changes in the endomembrane system of a filamentous fungus,Magnaporthe grisea. Protoplasma 190:151–163

    Google Scholar 

  • Brown RM Jr (1996) Cellulose biosynthesis in higher plants. Trends Plant Sci 5:149–156

    Google Scholar 

  • Currier HB, Strugger S (1956) Aniline blue and fluorescence microscopy of callose in bulb scales ofAllium cepa L. Protoplasma 45:552–559

    Google Scholar 

  • Dhugga KS, Ulskov P, Gallagher SR, Ray PM (1991) Possible components of golgi beta-glucan synthase in pea cells. J Biol Chem 266:21977–21984

    PubMed  Google Scholar 

  • Dietrich A, Mayer JE, Hahlbrock K (1990) Fungal elicitor triggers rapid, transient and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem 265: 6360–6368

    Google Scholar 

  • Donaldson JP, Lippincott-Schwartz J, Bloom GS, Kreis TE, Klausner RD (1992) Brefeldin A inhibits Golgi membrane catalysed exchange of guanine nucleotide onto ARF protein. Nature 360: 350–352

    PubMed  Google Scholar 

  • Driouich A, Zhang GF, Staehelin LA (1993) Effect of Brefeldin A on the structure of the golgi apparatus and on the synthesis and secretion of proteins and polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. Plant Physiol 101:1363–1373

    PubMed  Google Scholar 

  • Eschrich W (1976) Strasburger's kleines botanisches Praktikum für Anfänger. Fischer, Stuttgart

    Google Scholar 

  • Fincher GB, Stone BA (1981) Metabolism of noncellulosic polysaccharides. In: Tanner W, Loewus FA (eds) Extracellular carbohydrates. Springer, Berlin Heidelberg New York, pp 68–132 (Pirson A, Zimmermann MH [eds] Encyclopedia of plant physiology, NS, vol 13B)

    Google Scholar 

  • Foissner I (1988) Chlorotetracyclin-induced formation of wall appositions (callose plugs) in internodal cells ofNitella flexilis (Characeae). J Phycol 24: 458–467

    Google Scholar 

  • Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y (1988) Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263:18545–18552

    PubMed  Google Scholar 

  • Geitmann A, Li Yi Qin, Cresti M (1996) The role of the cytoskeleton and dictyosome activity in the pulsatory growth ofNicotiana tabacum andPetunia hybrida pollen tubes. Bot Acta 109: 102–109

    Google Scholar 

  • Hasegawa Y, Nakamura S, Nakamura N (1996) Immunocytochemical localization of callose in the germinated pollen ofCamellia japonica. Protoplasma 194:133–139

    Google Scholar 

  • Kauss H (1987) Some aspects of calcium dependent regulation in plant metabolism. Annu Rev Plant Physiol 38: 55–72

    Google Scholar 

  • — (1990) Role of the plasma membrane in host-pathogen interaction. In: Larson C, M/ℓler IM (eds) The plant plasma membrane. Springer, Berling Heidelberg New York Tokyo, pp 320–350

    Google Scholar 

  • — (1995) Callose synthesis. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. Bios Scientific Publishers, Oxford, pp 77–92

    Google Scholar 

  • —, Waldmann T, Quader H (1990) Ca2+ as a signal in the induction of callose synthesis. In: Ranjeva R, Boudet AM (eds) Signal transduction and perception in higher plants. Springer, Berlin Heidelberg New York Tokyo, pp 117–131

    Google Scholar 

  • Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080

    Google Scholar 

  • Lippincott-Schwartz J, Yuan L, Bonifacino J, Klausner R (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56: 801–813

    PubMed  Google Scholar 

  • Noguchi T, Watanabe H, Suzuki R (1998) Effects of brefeldin A on the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum in a green alga,Scenedesmus acutus. Protoplasma 201: 202–212

    Google Scholar 

  • O'Dell TJ, Kandel ER, Grant SGN (1991) Long term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353:558–560

    PubMed  Google Scholar 

  • Ray PM (1990) Maize coleoptile cellular membranes bearing different types of glucan synthetase activity. Methods Surv Biochem 9:135–146

    Google Scholar 

  • Robinson DG, Bäumer M, Hinz G, Hohl I (1997) Ultrastructure of the pea cotyledon Golgi apparatus: origin of dense vesicles and the action of brefeldin A. Protoplasma 200:198–208

    Google Scholar 

  • Rooney TA, Nahorsky SR (1989) Developmental aspects of muscarinic-induced inositol polyphosphate accumulation in rat cerebral cortex. Eur J Pharmacol Mol Pharmacol Sect 1: 425–434

    Google Scholar 

  • Salomon S, Meindl U (1996) Brefeldin A induces reversible dissociation of the Golgi apparatus in the green algaMicrasterias. Protoplasma 194: 231–242

    Google Scholar 

  • Samuels AL, Giddings TH Jr, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation of higher plants. J Cell Biol 130:1345–1357

    PubMed  Google Scholar 

  • Satiat-Jeunemaitre B, Hawes C (1992a) Reversible dissociation of the plant Golgi apparatus by Brefeldin A. Biol Cell 74: 325–328

    Google Scholar 

  • — — (1992b) Redistribution of a Golgi glycoprotein in plant cells treated with brefeldin A. J Cell Sci 103:1153–1156

    Google Scholar 

  • — — (1993a) The distribution of secretory products in plant cells is affected by brefeldin A. Cell Biol Int 17:183–193

    Google Scholar 

  • — — (1993b) Insights into the secretory pathway and vesicular transport in plant cells. Biol Cell 79: 7–15

    Google Scholar 

  • — — (1994) G. A.T.T. (a General Agreement on Traffic and Transport) and brefeldin A in plant cells. Plant Cell 6: 463–467

    PubMed  Google Scholar 

  • —, Steele C, Hawes C (1996) Golgi-membrane dynamics are cytosceleton dependent: a study on Golgi stack movement induced by brefeldin A. Protoplasma 191: 21–33

    Google Scholar 

  • Schindler T, Bergfeld R, Hohl M, Schöpfer P (1994) Inhibition of Golgi apparatus function by brefeldin A in maize coleoptiles and its consequences on auxin-mediated growth, cell-wall extensibility and secretion of cell-wall proteins. Planta 192: 404–413

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    PubMed  Google Scholar 

  • Staehelin LA, Driouich A (1997) Brefeldin A effects in plants. Plant Physiol 114: 401–403

    PubMed  Google Scholar 

  • Van Amstel AHM (1996) A relationship between callose and ectodesmata in epidermal cells ofAllium cepa L. Plant Cell Rep 15:707–711

    Google Scholar 

  • Van der Woude WJ, Lembi CA, Morre DJ, Kindinger JI, Ordin L (1974) β-Glucan synthetases of plasma membrane and Golgi apparatus from onion stem. Plant Physiol 54:333–340

    Google Scholar 

  • Vicrè M, Jauneau A, Knox JP, Driouich A (1998) Immunolocalization of β-(1→4) and β-(1→6)-D-galactan epitopes in the cell wall and Golgi stacks of developing flax root tissues. Protoplasma 203: 26–34

    Google Scholar 

  • Weidinger M (1980) Elektronenmikroskopische Untersuchungen an Innenepidermiszellen vonAllium cepa, insbesondere nach Einwirkung verschiedener Salze I: Mitochondrien und Plastiden. Mikroskopie 36: 23–32

    PubMed  Google Scholar 

  • — (1983) Elektronenmikroskopische Untersuchungen an Innenepidermiszellen vonAllium cepa, insbesonders nach Einwirkung verschiedener Salze II: Zellkern, endoplasmatisches Reticulum, Dictyosomen. Mikroskopie 40: 210–223

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kartusch.

Additional information

Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartusch, R., Lichtscheidl, I.K. & Weidinger, ML. Brefeldin A induces callose formation in onion inner epidermal cells. Protoplasma 212, 250–261 (2000). https://doi.org/10.1007/BF01282925

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282925

Keywords

Navigation