Skip to main content
Log in

Effects of glutathione on thiol redox systems, chromosomal aberrations, and the ultrastructure of meristematic root cells ofPicea abies (L.) Karst.

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Young spruce seedlings (Picea abies [L.] Karst.) grown in hydroponic culture were exposed to three different concentrations (50,100, and 500 μM) of reduced glutathione for 24 h. These physiologically relevant concentrations of glutathione had a multiple effect on the investigated tissue. Feeding of glutathione to roots increased the concentrations of thiols (glutathione, cysteine, and γ-glutamyl-cysteine) in roots, decreased the rate of cell divisions, induced mitotic abnormalities, and affected the cell ultrastructure. Electron micrographs showed effects such as advanced vacuolation, dilated rough-endoplasmic-reticulum cisternae, and separations of the plasma membrane from the cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GSH:

reduced glutathione

GSSG:

oxidised glu-tathione

rER:

rough endoplasmic reticulum

References

  • Bäck J, Neuvonen S, Huttunen S (1994) Pine needle growth and fine structure after prolonged acid rain treatment in the subarctic. Plant Cell Environ 17:1009–1021

    Google Scholar 

  • Bergmann L, Rennenberg H (1993) Glutathione metabolism in plants. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, pp 109–123

    Google Scholar 

  • Bielawski W, Joy KW (1986) Reduced and oxidized glutathione and glutathione reductase activity in tissues ofPisum sativum. Planta 169:267–272

    Google Scholar 

  • Bortz J, Lienert GA, Boenke K (1990) Verteilungsfreie Methoden in der Biostatistik. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Briand CH, Kapoor BM (1989) The cytogenetic effects of sodium salicylate on the root meristem cells ofAllium sati um L. Cytologia 54: 203–209

    Google Scholar 

  • Chen J, Goldsborough PB (1994) Increased activity of γ-glutamyl-cysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106: 233–239

    PubMed  Google Scholar 

  • Cowan AK, Botha CEJ, Hartley BJ, Cross RHM (1995) Ultrastructural changes in aging leaves of a light-grown achlorophyllous mutant of barley. Physiol Plant 94: 391–398

    Google Scholar 

  • De Kok LJ, Kuiper PJC (1986) Effect of short-term dark incubation with sulfate, chloride and selenate on the glutathione content of spinach leaf discs. Physiol Plant 68: 477–482

    Google Scholar 

  • Fiskesjö G (1994)Allium test II: assessment of a chemical's genotoxic potential by recording aberrations in chromosomes and cell divisions in root tips ofAllium cepa L. Environ Toxicol Water Qual 9: 235–241

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21–25

    Google Scholar 

  • Grill D, Esterbauer H (1973) Quantitative Bestimmung wasserlöslicher Sulfhydryl-Verbindungen in gesunden und SO2-geschädigten Nadeln vonPicea abies. Phyton (Horn, Austria) 15:87–101

    Google Scholar 

  • Grill E, Löffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal binding peptides of plants are synthesized from glutathione by a specific γ-glutamylcysteine dipeptiyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86: 6838–6842

    Google Scholar 

  • Herschbach C, Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulphate and sulphate transport in tobacco plants. J Exp Bot 45:1069–1076

    Google Scholar 

  • —, De Kok LJ, Rennenberg H (1995) Net uptake of sulphate and its transport to the shoot in spinach plants fumigated with H2S or SO2: does atmospheric sulphur affect the “inter-organ” regulation of sulphur nutrition? Bot Acta 108: 41–46

    Google Scholar 

  • —, Jouanin L, Rennenberg H (1998) Overexpression of gammaglutamylcysteine synthetase, but not of glutathione synthetase, elevates glutathione allocation in the phloem of transgenic poplar trees. Plant Cell Physiol 39: 447–451

    Google Scholar 

  • Huang CX, Van Steveninck RFM (1990) Salinity induced structural changes in meristematic cells of barley roots. New Phytol 115: 17–22

    Google Scholar 

  • Jamaï A, Tommasini R, Martinoia E, Delrot S (1996) Characterization of glutathione uptake in broad bean leaf protoplasts. Plant Physiol 111: 1145–1152

    PubMed  Google Scholar 

  • Jokela A, Palomäki V, Huttunen S, Jalkanen R (1996) Effects of root damage on the nutritional status and structure of Scots pine needles. J Plant Physiol 148: 317–323

    Google Scholar 

  • Klasterska I, Natarajan AT, Ramel C (1976) An interpretation of the origin of subchromatid aberrations and chromosome stickiness as a category of chromatid aberrations. Hereditas 83:153–162

    PubMed  Google Scholar 

  • Kottke I, Rapp C, Oberwinkler F (1986) Zur Anatomie gesunder und “kranker” Feinstwurzeln von Fichten: Meristem und Differenzierungen in Wurzelspitzen und Mykorrhizen. Eur J For Pathol 16:159–171

    Google Scholar 

  • Kranner I, Grill D (1993) Content of low-molecular-weight thiols during the imbibition of pea seeds. Physiol Plant 88: 557–562

    Google Scholar 

  • Kunert KJ, Foyer C (1993) Thiol/disulflde exchange in plants. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, pp 139–151

    Google Scholar 

  • Lamoureux GL, Rusness DG (1993) Glutathione in the metabolism and detoxification of xenobiotics in plants. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, pp 221–237

    Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and sulphate uptake in intactCanola. Plant Physiol 111: 147–157

    PubMed  Google Scholar 

  • Liu D, Wusheng J, Deshen L (1993) Effects of aluminium ion on root growth, cell division, and nucleoli of garlic (Allium sati um L.). Environ Pollut 82: 295–299

    PubMed  Google Scholar 

  • Luwe M (1996) Antioxidants in the apoplast and symplast of beech (Fagus syl atica L.) leaves: seasonal variations and responses to changing ozone concentrations in air. Plant Cell Environ 19: 321–328

    Google Scholar 

  • Marrs K (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 127–158

    PubMed  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49: 649–667

    Google Scholar 

  • McGill M, Pathak S, Hsu TC (1974) Effects of ethidium bromide on mitosis and chromosomes: a possible material basis for chromosome stickiness. Chromosoma 47:157–167

    PubMed  Google Scholar 

  • Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269: 9397–9400

    PubMed  Google Scholar 

  • Müller M, Guttenberger H, Grill D, Druskovic B, Paradiz J (1991) A cytogenetic method for examining the vitality of spruces. Phyton (Horn, Austria) 31:143–155

    Google Scholar 

  • —, Köhler B, Tausz M, Grill D, Lütz C (1996) The assessment of ozone stress by recording chromosomal aberrations in root tips of spruce trees (Picea abies [L.] Karst.). J Plant Physiol 148:160–165

    Google Scholar 

  • - Tausz M, Grill D (2000) Effects of exogenous glutathione on root tip chromosomes of spruce trees: does it exert mutagenic stress. For Genet (in press)

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  Google Scholar 

  • —, Arisi ACM, Jouanin L, Valadier MH, Roux Y, Foyer CH (1997) Light dependent modulation of foliar glutathione synthesis and associated amino acid metabolism in transformed poplar. Planta 202: 357–369

    Google Scholar 

  • —, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49: 623–647

    Google Scholar 

  • Ouzounidou G, Ciamporová M, Moustakas M, Karataglis S (1995) Responses of maize (Zeamays L.) to copper stress I: growth, mineral content and ultrastructure of roots. Environ Exp Bot 35: 167–176

    Google Scholar 

  • Pareek A, Singla SL, Grover A (1997) Short-term salinity and high temperature stress-associated ultrastructural alterations in young leaf cells ofOryza sati a L. Ann Bot 80: 629–639

    Google Scholar 

  • Rauser WE (1987) Changes in glutathione content of maize seedlings exposed to cadmium. Plant Sci 51:171–175

    Google Scholar 

  • Rennenberg H (1982) Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21:2771–2781

    Google Scholar 

  • — (1997) Molecular approaches to glutathione biosynthesis. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H (eds) Sulphur metabolism in higher plants. Backhuys, Leiden, pp 59–70

    Google Scholar 

  • —, Lamoureux G (1990) Physiological processes that modulate the concentration of glutathione in plant cells. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds) Sulfur nutrition and sulfur assimilation in higher plants. SBP Academic Publishing, The Hague, pp 53–65

    Google Scholar 

  • Sánchez-Fernández R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inzá D, May MJ (1997) Cell proliferation and hair tip growth in theArabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94: 2745–2750

    PubMed  Google Scholar 

  • Schmitt U, Liese W (1987) Zur Ultrastruktur der Meristemzellen in Feinstwurzeln von Fichten aus Waldschadensgebieten. Eur J For Pathol 17: 292–297

    Google Scholar 

  • Stephen J (1979) Cytological causes of spontaneous fruit abortion inHaemanthus katherinae Baker. Cytologia 44: 805–812

    Google Scholar 

  • Taulavuori E, Taulavuori K, Laine K (1999) Seasonally of glutathione dynamics in Scots pine and bilberry. Plant Biol 1:187–191

    Google Scholar 

  • Tausz M, Van der Kooij TAW, Müller M, De Kok LJ, Grill D (1998) Uptake and metabolism of oxidized and reduced sulfur pollutants by spruce trees. In: De Kok LJ, Stulen I (eds) Responses of plant metabolism to air pollution. Backhuys, Leiden, pp 455–458

    Google Scholar 

  • Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    PubMed  Google Scholar 

  • Wingate VPM, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 31: 205–211

    Google Scholar 

  • Wonisch A, Tausz M, Müller M, Weidner W, De Kok LJ, Grill D (1999) Treatment of young spruce shoots with SO2 and H2S: effects on fine root chromosomes in relation to changes in the thiol content and redox state. Water Soil Air Pollut 116: 423–428

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Müller.

Additional information

Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zellnig, G., Tausz, M., Pešec, B. et al. Effects of glutathione on thiol redox systems, chromosomal aberrations, and the ultrastructure of meristematic root cells ofPicea abies (L.) Karst.. Protoplasma 212, 227–235 (2000). https://doi.org/10.1007/BF01282923

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282923

Keywords

Navigation