Skip to main content
Log in

Nuclear crystals, lampbrush-chromosome-like structures, and perinuclear cytoskeletal elements associated with nuclear fragmentation in characean internodal cells

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

This article gives a survey of nucleus-associated structures and inclusions in a diverse range of characean algae includingChara braunii Gm.,Chara corallina Klein ex Willd., em. R.D.W.,Nitella cristata A.Br., em. R.D.W.,Nitella flexilis (L.) Ag.,Nitella furcata (Roxb. ex Bruz.) Ag. em. R.D.W.,Nitella hyalina (DC.) Ag.,Nitella pseudoflabellata A.Br., em. R.D.W.,Nitella pseudoflabellata var.imperialis T.F.A.,Nitella translucens var.axillaris (A.Br.) R.D.W. andNitellopsis obtusa (Desv. in Lois.) J.Gr. Lampbrushchromosome-like structures were found in nuclei ofNitella flexilis andNitellopsis obtusa and seem to be involved in the distribution of genetic material during nuclear fragmentation. Intranuclear tubular crystals of unknown protein composition were present in all species, especially in young, elongating cells, and could be important for establishing the main axis of the nuclei. Spindle-shaped protein crystals that originate in the nucleus and are released into the cytoplasm upon nuclear degeneration were observed in branchlet internodal cells of one population ofNitella flexilis. Perinuclear microtubules were present in all species, but perinuclear actin fibrils were hitherto only found in mostNitella species and inNitellopsis obtusa. None of these nucleus-associated structures seems to be responsible for the formation of constrictions leading to nuclear fragmentation. These constrictions were perpendicular to the main axis of the nucleus and symmetrical in theNitella species but asymmetric inC. braunii, C. corallina, and inNitellopsis obtusa. Statistical analysis of nuclear size, number and constriction sites indicate that fragmentation is a nonsynchronous process independent of the light-dark cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CLSM:

confocal laser scanning microscopy

DAPI:

4′,6-diamidino-2-phenylindole

DIC:

Nomarski differential interference contrast

LCLS:

lampbrush chromosome-like structure(s)

References

  • Andrews M, Davison IR, Andrews ME, Raven JA (1984) Growth ofChara hispida I: apical growth and basal decay. J Ecol 72: 873–884

    Google Scholar 

  • Barton R (1967) Occurrence and structure of intranuclear crystals inChara cells. Planta 77: 203–211

    Google Scholar 

  • Becker TA, Nagl W (1995) Tubular inclusions within polyploid nuclei ofGerris najas do not react with a monoclonal anti-β-tubulin antibody. Protoplasma 185: 166–169

    Google Scholar 

  • Behnke H-D (1991) Nondispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bull NS 12: 143–175

    Google Scholar 

  • — (1994) Sieve-element plastids, nuclear crystals and phloem proteins in the Zingiberales. Bot Acta 1: 1–60

    Google Scholar 

  • Berger S, Menzel D, Traub P (1994) Chromosomal architecture in giant premeiotic nuclei of the green algaAcetabularia. Protoplasma 178: 119–128

    Google Scholar 

  • —, Shoeman RL, Traub P (1996) Detection of dense intra- and perinuclear 10 nm filament systems by whole mount and embedmentfree Dasycladales. Protoplasma 190: 204–220

    Google Scholar 

  • Bucher O (1959) Die Amitose der tierischen und menschlichen Zelle. Springer, Wien (Heilbrunn LV, Weber F, et al [eds] Protoplasmatologia, vol VI, E, 1)

    Google Scholar 

  • Clark G (1981) Staining procedures, 4th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Collings DA, Wasteneys GO, Williamson RE (1995) Cytochalasin rearranges cortical actin of the algaNitella into short, stable rods. Plant Cell Physiol 36: 765–772

    Google Scholar 

  • Esau K, Magyarosy AC (1979) A crystalline inclusion in sieve element nuclei ofAmsinckia I: the inclusion in differentiating cells. J Cell Sci 54: 149–160

    Google Scholar 

  • —, Thorsch J (1982) Nuclear crystalloids in sieve elements of species ofEchium (Boraginaceae). J Cell Sci 54: 149–160

    Google Scholar 

  • Fabbri F, Manicanti F (1970) Electron microscope observations on intranuclear paracrystals in some pteridophyta. Caryologia 23: 729–761

    Google Scholar 

  • Fetzmann EL (1957) Rotierende Eigenbewegung der Zellkerne vonChara foetida. Sitzungsber Osterr Akad Wiss 14: 1–3

    Google Scholar 

  • — (1958) Über rotierende Eigenbewegung der Zellkerne und Plastiden beiChara foetida. Protoplasma 49: 549–556

    Google Scholar 

  • Foissner I, Wasteneys GO (1994) Injury toNitella internodal cells alters microtubule organization but microtubules are not involved in the wound response. Protoplasma 182: 102–114

    Google Scholar 

  • — — (1999) Microtubules at wound sites ofNitella internodal cells passively coalign with actin bundles when exposed to hydrodynamic forces generated by cytoplasmic streaming. Planta 208: 480–490

    Google Scholar 

  • —, Lichtscheidl IK, Wasteneys GO (1996) Actin-based vesicle dynamics and exocytosis during wound wall formation in characean internodal cells. Cell Motil Cytoskeleton 35: 35–48

    PubMed  Google Scholar 

  • Forsberg C (1965) Nutritional studies ofChara in axenic cultures. Physiol Plant 18: 275–90

    Google Scholar 

  • Geyer G (1973) Ultrahistochemie, 2nd edn. Fischer, Stuttgart

    Google Scholar 

  • Gillet C, Lefebvre J (1963) Observations sur l'évolution d'une formation chromatique filamenteuse à l'intérieur des noyeaux des cellules internodales deNitella. Rev Cytol Biol Veg 26: 349–358

    Google Scholar 

  • Hasitschka-Jenschke G (1960) Beitrag zur Karyologie von Characeen. Osterr Bot Z 107: 228–240

    Google Scholar 

  • Jarosch R (1958) Die Protoplasmafibrillen der CharaceeNitella. Protoplasma 50: 93–108

    Google Scholar 

  • — (1961) Das Characeen-Protoplasma und seine Inhaltskörper. Protoplasma 53: 34–56

    Google Scholar 

  • Johow F (1881) Die Zellkerne vonChara foetida. Bot Z 39: 729–753

    Google Scholar 

  • Karling JS (1926) Nuclear and cell division inNitella andChara. Bull Torrey Bot Club 53: 319–379

    Google Scholar 

  • Kisser J (1922) Amitose, Fragmentation und Vakuolisierung pflanzlicher Zellkerne. Sitzungsber Osterr Akad Wiss 131: 105–128

    Google Scholar 

  • Martys JL, Ho C-L, Liem RKH, Gundersen GG (1999) Intermediate filaments in motion: observations of intermediate filaments in cells using green fluorescent protein-vimentin. Mol Biol Cell 10: 1289–1295

    PubMed  Google Scholar 

  • Maszewski J (1991) Endopolyploidization patterns in nongenerative antheridial cells in mono- and dioeciousChara spp. (Characeae) with different DNA C-values. Plant Syst Evol 177: 39–52

    Google Scholar 

  • Nagl W (1981) Polytene chromosomes of plants. Int Rev Cytol 73: 21–53

    Google Scholar 

  • — (1982) DNA endoreplication and differential replication. In: Parthier B, Boulter D (eds) Nucleic acids and protein in plants II. Springer, Berlin Heidelberg New York, pp 111–124

    Google Scholar 

  • Pickett-Heaps JD (1967) Ultrastructure and differentiation inChara sp. I: vegetative cells. Aust J Biol Sci 20: 539–551

    Google Scholar 

  • — (1975) Green algae. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  • Pueschel CM (1992) An ultrastructural survey of the diversity of crystalline, proteinaceous inclusions in red algal cells. Phycologia 31: 489–499

    Google Scholar 

  • — (1994) Protein crystals inHaplogloia kuckuckii (Chordariales, Phaeophyceae): another mechanism for nitrogen storage in brown algae. Phycologia 33: 91–96

    Google Scholar 

  • Sachs L (1984) Angewandte Statistik, 6th edn. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Shen EYF (1967a) Amitosis inChara. Cytologia 32: 481–488

    Google Scholar 

  • — (1967b) Microspectrophotometric analysis of nuclear DNA inChara zeylanica. J Cell Biol 35: 377–384

    PubMed  Google Scholar 

  • Speta F (1979) Weitere Untersuchungen über Proteinkörper in Zellkernen und ihre taxonomische Bedeutung. Plant Syst Evol 132: 1–26

    Google Scholar 

  • Spring H, Scheer U, Franke WW, Trendelenburg MF (1975) Lampbrush-type chromosomes in the primary nucleus of the green algaAcetabularia meditermnea. Chromosoma 50: 25–43

    PubMed  Google Scholar 

  • Strasburger E (1880) Zellbildung und Zellteilung. Jena

  • — (1908) Einiges über Characeen und Amitose. Wiesner-Festschrift, Wien: 24–47

    Google Scholar 

  • Taler I (1966) Eiweisskristalle in Pflanzenzellen. Springer, Wien New York (Alfert M et al [eds] Protoplasmatologia, vol II, B, 2, b, γ)

    Google Scholar 

  • Tschermak-Woess E (1963) Strukturtypen der Ruhekerne von Pflanzen und Tieren. Springer, Wien (Alfert M et al [eds] Protoplasmatologia, vol V, 1)

    Google Scholar 

  • Wasteneys GO, Williamson RW (1987) Microtubule orientation in developing internodal cells ofNitella: a quantitative analysis. Eur J Cell Biol 43: 14–22

    Google Scholar 

  • — — (1991) Endoplasmic microtubules and nucleus-associated actin rings inNitella internodal cells. Protoplasma 162: 86–98

    Google Scholar 

  • —, Collings DA, Gunning BES, Hepler PK, Menzel D (1996) Actin in living and fixed characean internodal cells: identification of a cortical array of fine actin strands and chloroplast actin rings. Protoplasma 190: 25–38

    Google Scholar 

  • Wood RD (1972) Characeae of Australia. Cramer, Weinheim

    Google Scholar 

  • —, Imahori K (1965) Monograph of the Characeae. Cramer, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foissner, I., Wasteneys, G.O. Nuclear crystals, lampbrush-chromosome-like structures, and perinuclear cytoskeletal elements associated with nuclear fragmentation in characean internodal cells. Protoplasma 212, 146–161 (2000). https://doi.org/10.1007/BF01282916

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282916

Keywords

Navigation