Skip to main content
Log in

The terminal bar in the larval midgut epithelium ofAeshna cyanea

Fine structure and effects of calcium and lanthanum

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Thin section and freeze-fracture electron microscopy revealed that the terminal bars of the larval midgut epithelium ofAeshna cyanea consisted of extended smooth septate junctions (SSJ), multiple adhesive junctions and rare gap junctions. Freeze-fractures of native tissue suggested that the septal building units were anchored only in the external membrane leaflet by partially integrated proteins while the interseptal pegs were anchored partly in both leaflets by completely integrated proteins and partly by presumed peripheral proteins.

Reversible depletion of the physiological Ca++ concentration had no apparent structural effect on the SSJ of the terminal bars, but led to a reversible formation of junctional septa between the foot processes concomitant with a rearrangement of IMPs in the basolateral plasma membranes. The basolateral SSJ assembly and disassembly induced by reversible Ca++ deprivation was interpreted as exaggerated response of an intrinsic capability normally related to the apical growth of regenerative cells and to the extrusion of degenerating cells. Lanthanum tracer ingested with hyperosmotic drinking solution was always found excluded from the basolateral intercellular spaces underneath the terminal bar, but there was a dual effect on the SSJ structure. Part of the junctions remained structurally intact, part was dissociated in the apical portion and invaded by tracer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EF:

exoplasmic fracture face

EGTA:

ethylenglycol-bis(2-aminoethylether)-N,N′-tetraacetic acid

IMP:

intramembrane particle

PAS:

periodic acid Schiff reagent

PF:

protoplasmic fracture face

PSJ:

pleated septate junction

SDS:

sodium dodecyl sulphate

SSJ:

smooth septate junction

References

  • Anderson, E., Harvey, W. R., 1966: Active transport by theCecropia midgut. II. Fine structure of the midgut epithelium. J. Cell Biol.31, 107–134.

    Google Scholar 

  • Andries, J. C., 1972: Genèse intraépithéliale des microvillosités de l'épithélium mésentérique de la larve d'Aeshna cyanea. J. Microscopie15, 181–204.

    Google Scholar 

  • —, 1976: Presence de deux types cellulaires endocrine an sein du mesenteron de la larve d'Aeshna cyanea Müller (Odonata: Aeshnidae). Int. J. Insect Morphol. Embryol.5, 393–407.

    Google Scholar 

  • —, 1979: Junctional structures in the metamorphosing midgut ofAeshna cyanea (Insecta, Odonata). Cell Tissue Res.202, 9–15.

    Google Scholar 

  • Cheung, W. W. K., Marshal, A. T., 1973: Studies on water and ion transport in homopteran insects: Ultrastructure and cytochemistry of the cicadoid and cercopoid midgut. Tissue & Cell5, 651–669.

    Google Scholar 

  • Cioffi, M., 1979: The morphology and fine structure of the larval midgut of a moth (Manduca sexta) in relation to active ion transport. Tissue & Cell11, 467–479.

    Google Scholar 

  • Dallai, R., 1970: Glycoproteins in the zonula continua of the epithelium of the mid-gut in an insect. J. Microscopie9, 277–280.

    Google Scholar 

  • Fain-Maurel, M.-A., Cassier, P., Alibert, J., 1973: Étude infrastructurale et cytochimique de l'intestin moyen dePetrobius maritimus Leach en rapport avec ses fonctions excrétrices et digestives. Tissue & Cell5, 603–631.

    Google Scholar 

  • Flower, N. E., 1972: A new junctional structure in the epithelia of insects of the orderDictyoptera. J. Cell Sci.10, 683–691.

    Google Scholar 

  • —,Filshie, B. K., 1975: Junctional structures in the midgut cells of Lepidopteran caterpillars. J. Cell Sci.17, 221–239.

    Google Scholar 

  • Geiger, B., Schmid, E., Franke, W. W., 1983: Spatial distribution of proteins specific for desmosomes and adhaerens junctions in epithelial cells demonstrated by double immunofluorescence microscopy. Differentiation23, 189–205.

    Google Scholar 

  • Gilula, N. B., 1972: Septate junction development in sea urchin embryos. J. Cell Biol.55, 86 a.

    Google Scholar 

  • Gorbsky, G., Steinberg, M. S., 1981: Isolation of the intercellular glycoproteins of desmosomes. J. Cell Biol.90, 243–248.

    Google Scholar 

  • Gouranton, J., 1968: Composition, structure, et mode de formation des concrétions minérales dans l'intestin moyen des homoptères cercopides. J. Cell Biol.37, 316–328.

    Google Scholar 

  • Graf, F., 1978: Les jonctions continues zonaires et maculaires d'un epithelium de crustace. Biol. Cell33, 55–62.

    Google Scholar 

  • Graf, F., Noirot-Timothée, C., Noirot, Ch., 1982: The specialization of septate junctions in regions of tricellular junctions. I. Smooth septate junctions (= continuous junctions). J. Ultrastruct. Res.78, 136–151.

    Google Scholar 

  • Green, C. R., Noirot-Timothée, C., Noirot, C., 1983: Isolation and characterization of invertebrate smooth septate junctions. J. Cell Sci.62, 351–370.

    Google Scholar 

  • Harvey, W. R., Nedergaard, S., 1964: Sodium-independent active transport of potassium in the isolated midgut of theCecropia silkworm. Proc. Nat. Acad. Sci. U.S.51, 757–765.

    Google Scholar 

  • Herzog, H. U., 1979: Einfluß verschiedener Außenkonzentrationen auf die Haemolymphe und rectalen Chloridepithelien von Libellenlarven. Dipl.-Arbeit, Univ. Bonn.

  • Hull, B. E., Staehelin, L. A., 1979: The terminal web. A reevaluation of its structure and function. J. Cell Biol.81, 67–82.

    Google Scholar 

  • Humbert, W., 1974: Localisation, structure et genèse des concrétions minérales dans le mésentéron des CollembolesTomoceridae (Insecta, Collembold). Z. Morph. Tiere78, 99–109.

    Google Scholar 

  • Iwanga, T., Fujita, T., Nishiitsutsuji-Uwo, J., Endo, Y., 1981: Immunohistochemical demonstration of PP-, somatostatin-, enteroglucacon- and VIP-like immuno-reactivities in the cockroach midgut. Biomedical Res.2, 202–207.

    Google Scholar 

  • Karchar, B., Reese, T. S., 1983: Formation of misplaced and reflexive tight junction strands in prostate epithelial cells. J. Ultrastruct. Res.82, 90–95.

    Google Scholar 

  • Kukulies, J., Komnick, H., 1983: Plasma membranes, cell junctions and cuticle of the rectal chloride epithelia of the larval dragonflyAeshna cyanea. J. Cell Sci.59, 159–182.

    Google Scholar 

  • —,Naib-Majani, W., Komnick, H., 1984: Coincident filament distribution and histochemical localization of F-actin in the enterocytes of the larval dragonflyAeshna cyanea. Protoplasma121, 157–162.

    Google Scholar 

  • Lane, N. J., Harrison, J. B., 1978: An unusual type of the continuous junction inLimulus. J. Ultrastruct. Res.64, 85–97.

    Google Scholar 

  • —,Skaer, H. le B., 1980: Intercellular junctions in insect tissues. Adv. Insect Physiol.15, 36–213.

    Google Scholar 

  • —,Swales, L. S., 1978: Changes in the blood-brain barrier of the central nervous system in the blowfly during development, with special reference to the formation and disaggregation of gap and tight junctions. 1. Larval development. Develop. Biol.62, 389–414.

    Google Scholar 

  • — —, 1982: Stages in the assembly of pleated and smooth septate junctions in developing insect embryos. J. Cell Sci.56, 245–262.

    Google Scholar 

  • — —,Lee, W. M., 1980: Junctional dispersal and reaggregation: IMP reutilization? Cell Biol. Int. Rep.4, 738.

    Google Scholar 

  • Meldolesi, J., Castiglioni, G., Parma, R., Nassivera, N., Camilli, P. de, 1978: Ca+ +-dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. Effect of drugs. J. Cell Biol.79, 156–172.

    Google Scholar 

  • Meyran, J.-C., 1982: Segmental variations of intercellular junctions in insect malpighian tubules: a comparative study of two species. J. Ultrastruct. Res.79, 31–46.

    Google Scholar 

  • Moens, J., 1975: Ionic regulation of the haemolymph in the larvae of the dragonflyAeshna cyanea (Müller) (Odonata, Anisoptera). Arch. Intern. Physiol. Biochim.83, 443–451.

    Google Scholar 

  • Nishiitsutsuji-Uwo, J., Endo, Y., 1981: Gut endocrine cells in insects: The ultrastructure of the endocrine cells in the cockroach midgut. Biomedical Res.2, 30–44.

    Google Scholar 

  • Noirot, Ch., Noirot-Timothée, C., 1967: Un nouveau type de jonction intercellulaire (zonula continua) dans l'intestin moyen des insects. C. r. hebd. Séanc. Acad. Sci., Paris Ser. D.264, 2796–2798.

    Google Scholar 

  • ——, 1972: Structure fine de la bordure en brosse de l'intestin moyen chez les insects. J. Microscopie13, 85–96.

    Google Scholar 

  • Noirot-Timothée, C., Noirot, Ch., 1973: Jonctions et contacts intercellulaires chez les insects. I. Les jonctions septées. J. Ultrastruct. Res.37, 119–137.

    Google Scholar 

  • ——, 1980: Septate and scalariform junctions in arthropods. Int. Rev. Cyt.63, 97–140.

    Google Scholar 

  • Pitelka, D. R., Taggart, B. N., Hamamato, S. T., 1983: Effects of extracellular calcium depletion on membrane topography and occluding junctions of mammary epithelial cells in culture. J. Cell Biol.96, 613–624.

    Google Scholar 

  • Reed, W., Satir, P., 1981: Septate junction disruption and surface reorganization by non-lethal Ca2+ shock. Cell Biol. Int. Rep.5, 469–478.

    Google Scholar 

  • Reinhard, C., Hecker, H., 1973: Structure and function of the basal lamina and of the cell junctions in the midgut epithelium (stomach) of femaleAedes aegyti L. (Insecta, Diptera). Acta Trop.30, 213–236.

    Google Scholar 

  • Revel, J. P., Karnovsky, M. J., 1967: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol.33, C7.

    Google Scholar 

  • Simionescu, N., Simionescu, M., 1976: Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J. Cell Biol.70, 608–621.

    Google Scholar 

  • Skaer, H. le B., Harrison, B. J., Lee, W. M., 1979: Topographical variations in the structure of the smooth septate junction. J. Cell Sci.37, 373–389.

    Google Scholar 

  • Sohal, R. S., Peters, P. D., Hall, T. A., 1977: Origin, structure, composition and age-dependence of mineralized dense bodies (concretions) in the midgut epithelium of the adult houseflyMusca domestica. Tissue & Cell9, 87–102.

    Google Scholar 

  • Stobbart, R. H., Shaw, J., 1974: Salt and water balance; excretion. In: The physiology of insecta, 2nd edition, Vol. V (Rockstein, M., ed.), pp. 361–446. New York-London: Academic Press.

    Google Scholar 

  • Wigglesworth, V. B., 1965: The principles of insect physiology, 6th edition. London: Methuen & Co. Ltd.; New York: E. P. Dutton & Co. Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. E.Scholtyseck in honour of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukulies, J., Komnick, H. The terminal bar in the larval midgut epithelium ofAeshna cyanea . Protoplasma 121, 214–227 (1984). https://doi.org/10.1007/BF01282315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282315

Keywords

Navigation