Skip to main content
Log in

High-speed video observation of swimming behavior and flagellar motility ofProrocentrum minimum (Dinophyceae)

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

To understand the functions of the longitudinal and transverse flagella of dinoflagellates, the flagellar waveform and frequency of each flagellum were observed by high-speed video-recording. The longitudinal flagellum emerged from the anterior end of the cell and beat with a planar undulating wave whose plane was perpendicular to the valval sutural plane. The transverse flagellum curved around the anterior end of the cell and beat with a helical wave, with different alternating half pitches. The half pitch corresponding to the parts farther from the cellular antero-posterior axis was shorter than that of the parts closer to the axis. This pattern is described by the ratio of the outer-parts half pitch to the pitch of the whole period of the helix and seems to be characteristic of the dinoflagellates' transverse flagellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

p in :

half pitch corresponding to the inner parts of the transverse flagellum

p out :

half pitch corresponding to the outer parts of the transverse flagellum

P p :

pitch of helical swimming trajectory

R p :

radius of helical swimming trajectory

Ωc :

rotational frequency of the cell

References

  • Brokaw CJ, Wright L (1963) Bending waves of the posterior flagellum ofCeratium. Science 142: 1169–1170

    Google Scholar 

  • Cachon M, Greuet C, Cosson J, Huitorel P (1992) Analysis of the mechanism of dinoflagellate flagella contraction-relaxation cycle. Biol Cell 76: 33–42

    Google Scholar 

  • Gaines G, Taylor FJR (1985) Form and function of the dinoflagellate transverse flagellum. J Protozool 32: 290–296

    Google Scholar 

  • Goldstein SF (1992) Flagellar beat patterns. In: Melkonian M (ed) Algal cell motility. Chapman and Hall, New York, pp 99–153 (Current phycology, vol 3)

    Google Scholar 

  • González-Gil S, López-Rodas V, Aguilera A, Costas E (1994) Effects of size and form on dinoflagellate motion. Rev Biol Mar 29: 101–111

    Google Scholar 

  • Gray J, Hancock GJ (1955) The propulsion of sea-urchin spermatozoa. J Exp Biol 32: 802–814

    Google Scholar 

  • Holwill MEJ (1966) The motion ofEuglena viridis: the role of flagella. J Exp Biol 44: 579–588

    PubMed  Google Scholar 

  • Honsell G, Talarico L (1985) The importance of flagellar arrangement and insertion in the interpretation of the theca ofProrocentrum (Dinophyceae). Bot Mar 28: 15–21

    Google Scholar 

  • Inouye I, Hori T (1991) High-speed video analysis of the flagellar beat and swimming patterns of algae: possible evolutionary trends in green algae. Protoplasma 164: 54–69

    Google Scholar 

  • Jahn TL, Bovee EC (1964) Protoplasmic movements and locomotion of protozoa. In: Hutner SH (ed) Biochemistry and physiology of protozoa, vol 3. Academic Press, New York, pp 63–130

    Google Scholar 

  • —, Harmon WM, Landman M (1963) Mechanisms of locomotion in flagellates I:Ceratium. J Protozool 10: 358–363

    PubMed  Google Scholar 

  • —, Landman MD, Fonseca JR (1964) The mechanism of locomotion of flagellates II: function of the mastigonemes ofOchromonas. J Protozool 11: 291–296

    Google Scholar 

  • Kamykowski D, Reed RE, Kirkpatrick GJ (1992) Comparison of sinking velocity, swimming velocity, rotation and path characteristics among six marine dinoflagellate species. Mar Biol 113: 319–328

    Google Scholar 

  • LeBlond PH, Taylor FJR (1976) The propulsive mechanism of the dinoflagellate transverse flagellum reconsidered. BioSystems 8: 33–39

    PubMed  Google Scholar 

  • Levandowsky M, Kaneta PJ (1987) Behaviour in dinoflagellates. In: Taylor FJR (ed) Biology of dinoflagellates. Blackwell, Oxford, pp 360–397 (Botanical monographs, vol 21)

    Google Scholar 

  • Maruyama T (1981) Motion of the longitudinal flagellum inCeratium tripos (Dinoflagellida): a retractile flagellar motion. J Protozool 16: 272–280

    Google Scholar 

  • Metzner P (1929) Bewegungstudien an Peridineen. Z Bot 22: 225–265

    Google Scholar 

  • Okaichi T, Nishio S, Imatomi Y (1982) Collection and mass culture [Shiryô no]. In: Japanese Society of Fisheries Science (ed) Toxic phytoplankton: occurrence, mode of action, and toxins. Koseisha Koseikaku, Tokyo, pp 23–34 (in Japanese)

    Google Scholar 

  • Peters N (1929) Über Orts- und Geißelbewegung bei marinen Dinoflagellaten. Arch Protistenk 67: 291–321

    Google Scholar 

  • Rüffer U, Nultsch W (1985) High-speed cinematographic analysis of the movement ofChlamydomonas. Cell Motil 5: 251–263

    Google Scholar 

  • Sleigh MA (1991) Mechanisms of flagellar propulsion. Protoplasma 164: 45–53

    Google Scholar 

  • Taylor FJR (ed) (1987) Biology of dinoflagellates. Blackwell, Oxford

    Google Scholar 

  • Throndsen J (1973) Motility in some marine nanoplankton flagellates. Norw J Zool 21: 193–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyasaka, I., Nanba, K., Furuya, K. et al. High-speed video observation of swimming behavior and flagellar motility ofProrocentrum minimum (Dinophyceae). Protoplasma 204, 38–46 (1998). https://doi.org/10.1007/BF01282292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282292

Keywords

Navigation