, Volume 19, Issue 1–2, pp 102–111 | Cite as

Fundamentals of the technology of ceramoconcrete

  • Yu. E. Pivinskii


An investigation was carried out of the main structural types and production technology of ceramic materials with a rigid or floating frame based on a ceramic binder, i. e., ceramoconcretes.

The development of a production technology for ceramoconcrete should be based on the following basic principles: the grain-size distribution of the constituents should be decided with reference to maximum compaction and minimum shrinkage; the suspensions should be stabilized rheologically and added to the aggregate at minimal viscosity; the strength of the product should be optimal (i. e., adequate for construction purposes).

Toughening the product by the newly discovered mechanism of solution—condensation is a promising development in the technology of ceramoconcrete and unfired ceramics.

Ceramoconcrete is characterized by high resistance to cracking, high thermal strength, and good volumetric stability as a result of the “ceramic reinforcement” with a coarse-grained aggregate. Ceramoconcrete can be used with good results in place of ordinary concrete and ramming compounds as well as for many types of formed refractory and ceramic products.


Shrinkage Compaction Structural Type Ceramic Material Production Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    P. P. Budnikov and L. B. Khoroshavin, Phosphate-Bonded Refractory Concretes [in Russian], Metallurgiya, Moscow (1971).Google Scholar
  2. 2.
    P. S. Mamykin and K. K. Strelov, Technology of Refractories [in Russian], Metallurgiya, Moscow (1970).Google Scholar
  3. 3.
    Trans. Eastern Inst. Refract, [in Russian], No. 10, VostIO, Sverdlovsk (1970).Google Scholar
  4. 4.
    A. K. Purgin, I. P. Tsibin, A. V. Zhukov, et al., Silical Concretes and Blocks [in Russian], Metallurgiya, Moscow (1975).Google Scholar
  5. 5.
    Yu. E. Pivinskii and A. G. Romashin, Quartz Ceramics [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  6. 6.
    Yu. E. Pivinskii, Steklo Keram., No. 9, 25–29 (1969).Google Scholar
  7. 7.
    Concreting Manual [in Russian], Stroiizdat, Moscow (1975).Google Scholar
  8. 8.
    M. Z. Simonov, Fundamentals of the Technology of Lightweight Concretes [in Russian], Stroiizdat, Moscow (1973).Google Scholar
  9. 9.
    M. M. Sychev, Hardening of Bonding Substances [in Russian], Stroiizdat, Leningrad (1974).Google Scholar
  10. 10.
    I. I. Nemets, G. D. Semchenko, and A. N. Mozgovoi, Ogneupory, No. 5, 44–49 (1976).Google Scholar
  11. 11.
    Yu. E. Pivinskii, Steklo Keram., No. 6, 34–37 (1971).Google Scholar
  12. 12.
    Yu. E. Pivinskii, Ogneupory, No. 4, 52–57 (1972).Google Scholar
  13. 13.
    Yu. E. Pivinskii and A. I. Natsenko, Ogneupory, No. 11, 49–55 (1974).Google Scholar
  14. 14.
    Yu. E. Pivinskii, in: The Physicochemical Mechanics and Lyophily of Dispersed Systems [in Russian], No. 6, Naukova Dumka, Kiev (1974), pp. 182–187.Google Scholar
  15. 15.
    Yu. E. Pivinskii, Kolloidn. Zh.,35, No. 2, 289–295 (1973).Google Scholar
  16. 16.
    Yu. E. Pivinskii, L. G. Podobeda, A. D. Buravov, et al., Poroshk. Metall., No. 3, 37–42 (1976).Google Scholar
  17. 17.
    Yu. E. Pivinskii, Zh. Prikl. Khim.,45, No. 9, 1917–1922 (1972).Google Scholar
  18. 18.
    N. N. Kruglitskii and Yu. E. Pivinskii, Principles of Rheology [in Russian], Znanie, Kiev (1973).Google Scholar
  19. 19.
    Yu. E. Pivinskii and N. N. Kruglitskii, Kolloidn. Zh.,37, No. 5, 997–1001 (1975).Google Scholar
  20. 20.
    S. I. Shcheglov, V. L. Karasik, S. N. Derkach, et al., Ogneupory, No. 12, 30–34 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Yu. E. Pivinskii

There are no affiliations available

Personalised recommendations