Skip to main content
Log in

Characterization of theGeosiphon pyriforme symbiosome by affinity techniques: confocal laser scanning microscopy (CLSM) and electron microscopy

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Geosiphon pyriforme represents a photoautotrophic endosymbiosis of aGlomus-like fungus with the cyanobacteriumNostoc punctiforme. The fungus forms unicellular bladders of up to 2 mm in length and 0.5 mm in diameter growing on the soil surface and harboring the endosymbioticNostoc filaments. The cyanobacteria are located in a compartment (the symbiosome) bordered by a host membrane. The space between this symbiosome membrane (SM) and theNostoc cell wall is filled with an about 30–40 nm thick layer of amorphous material, which is present also in the regions of the symbiosome where noNostoc filaments are located. At these sites the amorphous material consists of a 20–30 nm thick layer separating the SM. The region between the SM and the cyanobacterium is defined as symbiosome space (SS). Fungal bladders, hyphae and free livingNostoc were analyzed by affinity techniques as well as the material occurring in the SS. FITC-coupled lectins with sugar specificity to α-D-mannosyl/α-D-glucosyl (Con A), N-acetyl-β-D-glucosamine oligomers (WGA), α-L-fucosyl (UEA-I), β-D-galactosyl (RCA-120), α-D-galactosyl (BS-I-B4), N-acetyl-α-D-galactosamine (HPA), and sialic acid (EBL) residues were tested. WGA binding and calcofluor white staining demonstrated that the bladder wall as well as the SS contain fibrillar chitin. Of the other lectins only Con A clearly labeled the symbiosome. On the contrary, the lectin binding properties of the slime produced by free livingNostoc-colonies indicate the presence of mannose, fucose, GalNAc, sialic acid, and galactose, while chitin or GlucNAc-oligomers could not be detected. The symbiosome was also investigated electron microscopically. WGA-gold binding confirmed the presence of chitin, while a slight PATAg reaction indicated some polysaccharidic molecules within the SS. Our results show that the amorphous material within the SS contains molecules typical of the fungal cell wall and suggest that the SM is related to the fungal plasma membrane. The applied lectins all bind to the hyphal surface, indicating a high molecular complexity. Mannosyl, β-galactosyl, and sialic acid residues are strongly exposed at the outer cell wall layer, whereas GlucNAc, GalNAc, and α-galactosyl residues seem to be present in smaller amounts. The symbiotic interface established between the fungus andNostoc inGeosiphon shows many similarities to that occurring between fungi and root cells in arbuscular mycorrhizas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

arbuscular mycorrhiza

BS-I-B4 :

Bandeiraea simplicifolia lectin I isolectin B4

CLSM:

confocal laser scanning microscopy

Con A:

Concanavalin A

EBL:

elderberry bark lectin I

FITC:

fluorescein isothiocyanate

HPA:

Helix pomatia agglutinin

PATAg:

periodic acid-thiocarbohydrazide-Ag proteinate

SM:

symbiosome membrane

SS:

symbiosome space

RCA-120:

Ricinus communis agglutinin 120

UEA-I:

Ulex europaeus agglutinin I

WGA:

wheat germ agglutinin

References

  • Bartnicki-Garcia S (1987) The cell wall: a crucial structure in fungal evolution. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 389–403

    Google Scholar 

  • Bishop CT, Adams GA, Hughes EO (1954) A polysaccharide from the blue-green alga,Anabaena cylindrica. Can J Chem 32: 999–1004

    Google Scholar 

  • Bonfante P (1994) Ultrastructural analysis reveals the complex interactions between root cells and arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 73–87

    Google Scholar 

  • —, Bianciotto V (1995) Saprotrophic versus symbiotic phase in endomycorrhizal fungi: morphology and cytology. In: Hoch B, Varma A (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York Tokyo, pp 229–247

    Google Scholar 

  • Bonfante P, Grippiolo R (1984) Cytochemical and biochemical observations on the cell wall of the spores ofGlomus epigaeum. Protoplasma 123: 140–151

    Google Scholar 

  • —, Perotto S (1995) Strategies of colonization by arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130: 3–21

    Google Scholar 

  • —, Spanu P (1992) Pathogenic and endomycorrhizal associations. Methods Microbiol 24: 141–168

    Google Scholar 

  • —, Perotto S, Testa B, Faccio A (1987) Ultrastructural localization of cell surface sugar residues in ericoid mycorrhizal fungi by gold-labeled lectins. Protoplasma 139: 25–35

    Google Scholar 

  • —, Faccio A, Perotto S, Schubert A (1990) Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungusGlomus versiforme. Mycol Res 94: 157–165

    Google Scholar 

  • Deacon JW (1984) Introduction to modern mycology: structure and fine structure. In: Wilkinson JF (ed) Basic microbiology, vol 7. Blackwell, Oxford, pp 32–35

    Google Scholar 

  • Dunn JH, Wolk CP (1970) Composition of the cellular envelopes ofAnabaena cylindrica. J Bacteriol 103: 153–158

    Google Scholar 

  • Grosskopf DG, Kroiher M (1988) Gradients in plastid and mitochondrial DNA synthesis inFunaria protonemata: visualisation by bromodeoxyuridine immunohistochemistry. Protoplasma 147: 1–4

    Google Scholar 

  • Guillot J, Breton A, Damez M, Dusser M, Gaillard-Martinie B, Millet L (1990) Use of lectins for a comparative study of cell wall composition of different anaerobic rumen fungal strains. FEMS Microbiol Lett 67: 151–156

    Google Scholar 

  • Herth W, Schnepf E (1980) The fluorochrome, calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma 105: 129–133

    Google Scholar 

  • Hill DR, Peat A, Potts M (1994) Biochemistry and structure of the glucan secreted by desiccation-tolerantNostoc commune (Cyanobacteria). Protoplasma 182: 126–148

    Google Scholar 

  • Höchst H, Martin HH, Kandier O (1965) Zur Kenntnis der chemischen Zusammensetzung der Zellwand der Blaualgen. Z Pflanzenphysiol 53: 39–57

    Google Scholar 

  • Hough L, Jones JKN, Wadman WH (1952) An investigation of the polysaccharide components of certain fresh-water algae. J Chem Soc 1952: 3393–3399

    Google Scholar 

  • Jabaji-Hare SH, Thérien J, Charest PM (1990) High resolution cytochemical study of the vesicular-arbuscular mycorrhizal association,Glomus darum xAllium porrum. New Phytol 114: 481–496

    Google Scholar 

  • Johnson GD, Araujo GM, de Nogueira C (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43: 349–350

    Google Scholar 

  • Kluge M, Mollenhauer D, Mollenhauer R (1991) Photosynthetic carbon assimilation inGeosiphon pyriforme (Kützing) F v Wettstein, an endosymbiotic association of fungus and cyanobacterium. Planta 185: 311–315

    Google Scholar 

  • — — —, Kape R (1992)Geosiphon pyriforme, an endosymbiotic consortium of a fungus and a cyanobacterium (Nostoc), fixes nitrogen. Bot Acta 105: 343–344

    Google Scholar 

  • — — — (1994)Geosiphon pyriforme (Kützing) von Wettstein, a promising system for studying endocyanoses. Prog Bot 55: 130–141

    Google Scholar 

  • Knapp E (1933) ÜberGeosiphon pyriforme Fr. Wettst, eine intrazelluläre Pilz-Algen-Symbiose. Ber Dtsch Bot Ges 51: 210–217

    Google Scholar 

  • Kokyrsta PN, Chekoi VN (1972) Biochemical composition of the blue-green algaNostoc linckia f.muscorum (AG) Elenk. and its lifelong production. Ser Biol Khim 2: 46–48 (in Russian)

    Google Scholar 

  • Martin C, Codd GA, Siegelman HW, Weckesser J (1989) Lipopolysaccharides and polysaccharides of the cell envelope of toxicMicrocystis aeruginosa strains. Arch Microbiol 152: 90–94

    Google Scholar 

  • Mehta VB, Vaidya BS (1978) Cellular and extracellular polysaccharides of the blue-green algaNostoc. J Exp Bot 29: 1423–1430

    Google Scholar 

  • Mollenhauer D (1988) Weitere Untersuchungen anGeosiphon pyriforme-einer Lebensgemeinschaft von Pilz und Blaualge. Natur Museum 118: 289–309

    Google Scholar 

  • — (1992)Geosiphon pyriforme. In: Reisser W (ed) Algae and symbiosis: plants, animals, fungi, viruses, interactions explored. Biopress, Bristol, pp 339–351

    Google Scholar 

  • —, Mollenhauer R (1988)Geosiphon cultures ahead. Endocytobios Cell Res 5: 69–73

    Google Scholar 

  • —, Kluge M (1994)Geosiphon pyriforme. Endocytobios Cell Res 10: 29–34

    Google Scholar 

  • Moore BG, Tischer RG (1964) Extracellular polysaccharides of algae: effects on life-support systems. Science 145: 586–587

    Google Scholar 

  • — — (1965) Biosynthesis of extracellular polysaccharides by the blue-green algaAnabaena flos-aquae. Can J Microbiol 11: 877–885

    Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37: 471–491

    Google Scholar 

  • Pritzer M, Weckesser J, Jürgens UJ (1989) Sheath and outer membrane components from the cyanobacteriumFischerella sp. PCC 7414. Arch Microbiol 153: 7–11

    Google Scholar 

  • Roland JC (1978) General preparation and staining of thin sections. In: Hall JL (ed) Electron microscopy and cytochemistry of plant cells. North-Holland, Amsterdam, pp 1–62

    Google Scholar 

  • Roth LE, Jean K, Stacey G (1988) Homology in endosymbiotic systems: the term “symbiosome”. In: Palacios R, Verma DPS (eds) Molecular genetics of plant-microbe interactions. The American Phytopathological Society Press, St Paul, MN, p 220

    Google Scholar 

  • Sangar VK, Dugan PR (1972) Polysaccharide produced byAnacystis nidulans: its ecological implication. Appl Microbiol 24: 732–734

    Google Scholar 

  • Schneider S, Jürgens U (1991) Cell wall and sheath constituents of the cyanobacteriumGloeobacter violaceus. Arch Microbiol 156: 312–318

    Google Scholar 

  • Schnepf E (1964) Zur Feinstruktur vonGeosiphon pyriforme. Arch Microbiol 49: 112–131

    Google Scholar 

  • Schrader M, Drews G, Golecki JR, Weckesser J (1982) Isolation and characterization of the sheath from the cyanobacteriumChlorogloeopsis PCC 6912. J Gen Microbiol 128: 267–272

    Google Scholar 

  • Schüßler A, Mollenhauer D, Schnepf E, Kluge M (1994)Geosiphon pyriforme, an endosymbiotic association of fungus and cyanobacteria: the spore structure resembles that of arbuscular mycorrhizal (AM) fungi. Bot Acta 107: 36–45

    Google Scholar 

  • —, Schnepf E, Mollenhauer D, Kluge M (1995) The fungal bladders of the endocyanosisGeosiphon pyriforme, a Glomus-related fungus: cell wall permeability indicates a limiting pore radius of only 0.5 nm. Protoplasma 185: 131–139

    Google Scholar 

  • Sengbusch P v, Müller U (1983) Distribution of glycoconjugates at algal surfaces as monitored by FITC-conjugated lectins. Studies on selected species from Cyanophyta, Pyrrophyta, Raphidophyta, Euglenophyta, Chromophyta, and Chlorophyta. Protoplasma 114: 103–113

    Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363: 67–69

    Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114: 1–38

    Google Scholar 

  • Tease BE, Walker RW (1987) Comparative composition of the sheath of the cyanobacteriumGloeothece ATCC 27152 cultured with and without combined nitrogen. J Gen Microbiol 133: 3331–3339

    Google Scholar 

  • Tischer RG, Moore BG (1964) An extracellular polysaccharide produced byPalmella mucosa Kütz. Arch Mikrobiol 49: 158–166

    Google Scholar 

  • van der Merwe PA, Barclay AN (1994) Transient intercellular adhesion: the importance of weak protein-protein interactions. Trend Biochem Sci 19: 354–358

    Google Scholar 

  • Vincenzini M, De Phillips R, Sili C, Materassi R (1990) Studies on exopolysaccharide release by diazotrophic batch cultures ofCyanospira capsulata. Appl Microbiol Biotechnol 34: 392–396

    Google Scholar 

  • Wang AW, Hill A (1977) Chemical analysis of the phenol-waterextractable materials fromAnabaena flos-aquae. J Bacteriol 130: 558–560

    Google Scholar 

  • Weckesser J, Hofmann K, Jürgens UJ, Whitton BA, Raffelsberger B (1988) Isolation and chemical analysis of the sheaths of filamentous cyanobacteriaCalothrix parietina andC. scopulorum. J Gen Microbiol 134: 629–634

    Google Scholar 

  • Weijmann ACM, Meuzelaar HLC (1979) Biochemical contributions to the taxonomic status of the Endogonaceae. Can J Bot 57: 284–291

    Google Scholar 

  • Werner D (1992) TheRhizobium/Bradyrhizobium-Fabales symbiosis. In: Werner D (ed) Symbioses of plants and microbes. Chapmann and Hall, London, pp 49–167

    Google Scholar 

  • Wettstein F v (1915)Geosiphon Fr. Wettst., eine neue, interessante Siphonee. Österr Bot Z 65: 145–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Peter Sitte at the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schüßler, A., Bonfante, P., Schnepf, E. et al. Characterization of theGeosiphon pyriforme symbiosome by affinity techniques: confocal laser scanning microscopy (CLSM) and electron microscopy. Protoplasma 190, 53–67 (1996). https://doi.org/10.1007/BF01281194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01281194

Keywords

Navigation