Skip to main content
Log in

Sugar secretion from the nectary ofStrelitzia: an ultrastructural and physiological study

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Flowers ofStrelitzia reginae grown at a constant 20°C have been shown to secrete nectar at a rate of up to 5.0 mg (d.w.) sugar h−1 (mean rate 1.2±0.1 mg h−1) for up to seven days. The nectar has a total concentration of about 25% during the early part of the secretory period but often falling to less than 10% towards the end of secretion.

Each flower has three septal nectaries, the cuticle-lined ducts of which open into a nectar basin formed by the fused bases of two petals on the top of the receptacle. The layer of epithelial cells which secretes the sugars is thrown into highly convoluted folds and the distal parts of these cells have profuse wall inpushings. Both of these modifications have the effect of increasing the surface area of the plasmalemma apparently available for unloading the nectar. The glandular epithelium of the three, 26 mm long, nectaries of a single flower would be lined by more than 17×106 cells with a total plasmalemma surface area for unloading of at least 2,000 mm2. There is little evidence to suggest that secretion is a granulocrine process inStrelitzia. While there is abundant, stacked endoplasmic reticulum, and numerous vesicles containing fibrillar material, these do not appear to be directly concerned with sugar secretion. Data from specific flowers suggest that transmembrane fluxes in the range of 1.0×106 to 1.0×10−7 mol s−1 m−2 would be necessary to sustain the observed rates of secretion. While these are relatively high, when taken together with the structural information, they lead to the conclusion that secretion inStrelitzia is probably an eccrine process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agthe K (1951) Über die physiologische Herkunft des Pflanzennektars. Ber Schweiz Bot Ges 61: 240–273

    Google Scholar 

  • Atkinson MR, Findlay GP, Hope AB, Pitman MG, Saddler HDW, West KR (1967) Salt regulation in the mangrovesRhizophora mucronata Lam. andAegialitis annulata R. Br Aust J Biol Sci 20: 589–599

    Google Scholar 

  • Benner U, Schnepf E (1975) Die Morphologie der Nektarausscheidung bei Bromeliaceen: Beteiligung des Golgi-Apparates. Protoplasma 85: 337–349

    Google Scholar 

  • Brongniart A (1854) Les glandes nectariferes de l'ovaire dans diverses familles de plantes Monocotyledones. Ann Sci Nat (Paris) 4 (2): 5–23

    Google Scholar 

  • Christensen E (1973) Staining sections before removal of paraffin. Am J Bot 60 [suppl] 37

    Google Scholar 

  • Daumann E (1935) Die systematische Bedeutung des Blütennektariums der Gattung Iris. Bot Centralblatt 53: 525–625

    Google Scholar 

  • — (1970) Das Blütennektarium der Monocotyledonen unter besonderer Berücksichtigung seiner systematischen und phylogenetischen Bedeutung. Feddes Repertorium 80: 463–590

    Google Scholar 

  • Diamond JM, Karasov WH, Phan D, Carpenter FL (1986) Digestive physiology is a determinant of foraging about frequency in humming birds. Nature 320: 62–63

    Google Scholar 

  • Durkee LT (1983) The ultrastructure of floral and extrafloral nectaries. In:Bently B, Elias T (eds) The biology of nectaries. Columbia University Press, New York

    Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London

    Google Scholar 

  • —,Benouaiche P (1979) Ultrastructure, development and secretion in the nectary of banana flowers. Ann Bot 44: 85–93

    Google Scholar 

  • Faraday CD, Quinton PM, Thomson WW (1986) Ion fluxes across the transfusion zone of secretingLimonium salt glands determined from secretion rates, transfusion zone areas and plasmodesmatal frequencies. J Exp Bot 37: 482–494

    Google Scholar 

  • —,Thomson WW (1986) Morphometric analysis ofLimonium salt glands in relation to ion efflux. J Exp Bot 37: 471–481

    Google Scholar 

  • Findlay N, Mercer FV (1971) Nectar production inAbutilon. 1—Movement of nectar through the cuticle. Aust J Biol Sci 24: 647–656

    Google Scholar 

  • — — (1971) Nectar production inAbutilon. 2—Sub-microscopic structure of the nectary. Aust J Biol Sci 24: 657–664

    Google Scholar 

  • —,Reed M, Mercer FV (1971) Nectar production inAbutilon. 3—Sugar secretion. Aust J Biol Sci 24: 665–675

    Google Scholar 

  • Frost SJ, Frost PGH (1981) Sun bird pollination ofStrelitzia nicolai. Oecologia 49: 379–384

    Google Scholar 

  • Grassmann P (1884) Die Septaldrüsen. Ihre Verbreitung, Entstehung und Verrichtung. Flora 67: 113–116

    Google Scholar 

  • Gunning BES, Hughes JE (1976) Quantitative assessment of symplastic transport of pre-nectar into trichomes ofAbutilon nectaries. Aust J Plant Physiol 3: 619–637

    Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison J (1981) The digestive glands ofPinguicula: structure and cytochemistry. Ann Bot 47: 293–319

    Google Scholar 

  • Hill AE, Hill BS (1976) Elimination processes by glands. Mineral ions. In:Lüttge U, Pitman MG (eds) Encyclopaedia of plant physiology, NS, vol 2 B. Springer, Berlin Heidelberg New York, pp 226–243

    Google Scholar 

  • Humphreys TE (1973) Sucrose transport at the tonoplast. Phytochem 12: 1211–1219

    Google Scholar 

  • Jung, KD, Lüttge U (1980) Effects of fusicoccin and abscisic acid on sugar and ion transport from plant glands. Ann Bot 45: 339–349

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27: 137A

    Google Scholar 

  • Kronestedt EC, Robards AW (1985) Nectar secretion by the flower ofStrelitzia reginae. Proc R Microsc Soc 20: 20–21

    Google Scholar 

  • - -Stark M,Olesen P (in press) Development of trichomes in the Abutilon nectary gland. Nord J Bot

  • Kronestedt EC, Walles B (1986) Anatomy of theStrelitzia reginae flower. Nord J Bot 6: 307–320

    Google Scholar 

  • Lüttge U (1961) Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion 1. Planta 56: 189–212

    Google Scholar 

  • — (1977) Nectar composition and membrane transport of sugars and amino acids: a review on the present state of nectar research. Apidologie 8: 305–319

    Google Scholar 

  • —,Schnepf E (1976) Organic substances. In:Lüttge U, Pitman MG (eds) Encyclopaedia of plant physiology, NS, vol 2B. Springer, Berlin Heidelberg New York, pp 244–277

    Google Scholar 

  • Matile P (1956) Über den Stoffwechsel und die Auxinabhängigkeit der Nektarsekretion. Ber Schweiz Bot Ges 66: 237–266

    Google Scholar 

  • Percival MS (1961) Types of nectar in angiosperms. New Phytol 60: 235–281

    Google Scholar 

  • Pleasants JM (1983) Nectar production patterns inIpomopsis aggregata (Polemoniaceae). Am J Bot 70: 1468–1475

    Google Scholar 

  • Rachmilevitz T, Fahn A (1975) The floral nectary ofTropaeolum majus, L. The nature of the secretory cells and the manner of nectar secretion. Ann Bot 39: 721–728

    Google Scholar 

  • Reed ML, Findlay N, Mercer FV (1971) Nectar production inAbutilon. 4—water and solute relations. Aust J Biol Sci 24: 677–688

    Google Scholar 

  • Robards AW (1984) Fact or artefact—a cool look at biological electron microscopy. Proc R Microsc Soc 19: 195–208

    Google Scholar 

  • — (1985) The use of low temperature methods for structural and analytical studies of plant transport processes. In:Robards AW (ed) Botanical microscopy 1985. Oxford University Press, Oxford, pp 39–64

    Google Scholar 

  • —,Clayson A, Waites P (1985) Dimensions-a suite of programs for use with digitising pads linked to the BBC Micro. Proc R Microsc Soc 20: 197–199

    Google Scholar 

  • —,Oates K (1986) X-ray microanalysis of ion distribution inAbutilon nectary hairs. J Exp Bot 37: 940–946

    Google Scholar 

  • Schnepf E (1964) Zur Cytologie und Physiologie pflanzlicher Drüsen. 4 Teil. Licht- und elektronenmikroskopische Untersuchungen an Septalnektarien. Protoplasma 58: 137–171

    Google Scholar 

  • — (1974) Gland Cells. In:Robards AW (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill, Maidenhead, pp 331–357

    Google Scholar 

  • —,Benner U (1978) Die Morphologie der Nektarausscheidung bei Bromeliaceen II. Experimentelle und quantitative Untersuchungen beiBilbergia nutans. Biochem Physiol Pflanz 173: 23–36

    Google Scholar 

  • Schniewind-Thies J (1897) Beiträge zur Kenntnis der Septalnektarien. Bot Zbl 69/70: 216–218

    Google Scholar 

  • Shuel RW (1961) Influence of reproductive organs on secretion of sugars inStreptosolen jamesonii MIERS. Plant Physiol 36: 265–271

    Google Scholar 

  • Slayman CL, Slayman CW (1974) Depolarization of the plasma membrane ofNeurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proc Natl Acad Sci USA 71: 1935–1939

    Google Scholar 

  • Smith FA (1967) Links between glucose uptake and metabolism inNitella translucens L. J Exp Bot 18: 348–358

    Google Scholar 

  • Steer MW (1985) Vesicle dynamics. In:Robards AW (ed) Botanical microscopy 1985. Oxford University Press, Oxford, pp 129–155

    Google Scholar 

  • Steinbrecher W, Lüttge U (1969) Sugar and ion transport in isolated onion epidermis. Aust J Biol Sci 22: 1137–1143

    Google Scholar 

  • Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14: 741–759

    Google Scholar 

  • — (1981) Lucifer dyes—highly fluorescent dyes for biological tracing. Nature 292: 17–21

    Google Scholar 

  • Vasiliev AE (1971) New data on the ultrastructure of flower nectaries. Akad Nauk SSSR Bot J 56: 1292–1306

    Google Scholar 

  • — (1972) The ultrastructure of the nectary cells of cucumber. Tsitologiia 14: 405–415

    Google Scholar 

  • Wallen DG (1974) Glucose, fructose and sucrose influx intoNitella flexilis. Can J Bot 52: 1–4

    Google Scholar 

  • Wrischer M (1962) Elektronenmikroskopische Beobachtungen an extrafloralen Nektarien vonVicia faba L. Acta Bot Croat 20/21: 75–94

    Google Scholar 

  • Ziegler H (1965) Die Physiologie pflanzlicher Drüsen. Ber Dtsch Bot Ges 78: 466–477

    Google Scholar 

  • —,Lüttge U (1959) Über die Resorption von C14-Glutaminsäure durch sezernierende Nektarien. Naturwissenschaften 46: 176–177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronestedt, E.C., Robards, A.W. Sugar secretion from the nectary ofStrelitzia: an ultrastructural and physiological study. Protoplasma 137, 168–182 (1987). https://doi.org/10.1007/BF01281152

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01281152

Keywords

Navigation