Skip to main content
Log in

Vergleichende Studien zur amöboiden Beweglichkeit

Comparative studies on amoeboid movement

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Different movements ofRhizopoda are comparatively described. It is supposed, that rotating fibrils in the pseudopodia lead to the following phenomenons: The circular undulations of small amoebae (Figs. 1 and 2), the waves of elongated pseudopods directed to the cell, the waves of helical pseudopods (Figs. 3–8), the emergence of vibrating filopodia, the branching and the shearing forces of filopodia. Some other processes, as the feedback-mechanism during the generation of pseudopods (see Fig. 18), the increased number of villi at the rear after the removing of a pressure from the cell (Figs. 21 and 22, compare the model-experiment in Fig. 35) and the emergence of branched fibrils during the influence of 1.0 mol glucose (Figs. 24–33)—together with the electron microscopic evidence of several authors—suggest a large fibrous complex closed upon itself in the peripheral protoplasm of the amoeba. The periodical emergence of the pseudopods, their following softening and collapse (especially of filopodia and axopodia, see Figs. 14–17) are explained by torsional forces in this fibrous complex, which change their directions (growing out by winding around itself—winding off—folding—unfolding—growing out ... compare the very hypothetical schemes of Fig. 36). The rotations of fibrils described above appear as one stage in this process.

Zusammenfassung

Bewegungsphänomene an verschiedenen Rhizopoden werden vergleichend beschrieben. Die kreisenden Undulationen kleiner Amöben (Abb. 1 und 2), der zur Zelle gerichtete Wellenablauf an ausgestreckten Pseudopodien, die Wellen der Schrauben-Pseudopodien (Abb. 3–8), das Herauswachsen unter Vibration, die Verzweigung und die Scherkräfte von Filopodien können gemeinsam auf rotierende Fibrillen in den Pseudopodien zurückgeführt werden. Das „Rückkopplungsverhalten“ bei der Entstehung von Pseudopodien (vgl. Abb. 18), die Vermehrung der „Villi“ am Amöbenschwanz nach Spannungsverminderung (Abb. 21 und 22, vgl. dazu den Modellversuch in Abb. 35) und das Heraustreten von verzweigten Fibrillen unter der Einwirkung von 1.0 mol Traubenzucker (Abb. 24–33) sprechen mit den elektronenmikroskopischen Befunden verschiedener Autoren für die Existenz eines großen, in sich geschlossenen Fibrillenkomplexes im peripheren Amöbenplasma. Das periodische Herauswachsen der Pseudopodien, das darauf folgende Weichwerden und Zusammenbrechen (besonders der Filopodien und Axopodien, vgl. Abb. 14–17) werden auf periodisch ihre Richtung ändernde Torsionsspannungen in diesem Fibrillenkomplex zurückgeführt (Auswachsen durch Selbstumwindung — Abwindung — Faltung — Entfaltung — Auswachsen ... vgl. dazu das sehr hypothetische Schema der Abb. 36). Die oben beschriebenen Fibrillenrotationen erscheinen als eine Phase in diesem Geschehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Abé, T. H., 1961: Morpho-physiological study of ameboid movement. I. Dynamic organization of striata amebae. Cytologia26, 378–407.

    Google Scholar 

  • —, 1962: Morpho-physiological study of ameboid movement. II. Ameboid movement and the organization pattern in a striata ameba. Cytologia27, 111–139.

    Google Scholar 

  • Allen, R. D., 1961 a: Structure and function in amoeboid movement. In: Biological structure and function, Vol. II (T. W. Goodwin andO. Lindberg, Eds.), 549–556. London-New York: Academic Press 1961.

    Google Scholar 

  • —, 1961 b: A new theory of ameboid movement and protoplasmic streaming. Experimental Cell Research, Suppl.8, 17–31.

    Google Scholar 

  • —, 1964: Cytoplasmic streaming and locomotion in marineForaminifera. In: Primitive motile systems in cell biology (R. D. Allen andN. Kamiya, Eds.), 407–432. New York and London: Academic Press.

    Google Scholar 

  • - 1968: Differences of a fundamental nature among several types of amoeboid movement. In: Aspects of cell motility, 23. Symposium of the Society for Experimental Biology, 151–168.

  • —, 1970: Comparative aspects of amoeboid movement. Acta Protozoologica7, 291–299.

    Google Scholar 

  • Berrend, R. E., 1964: Filopodial movement inCyphoderia ampulla (Ehr.). In: Primitive motile systems in cell biology (R. D. Allen andN. Kamiya, Eds.), 433–443. New York and London: Academic Press.

    Google Scholar 

  • Bhowmick, D. K., 1967: Electron microscopy ofTrichamoeba villosa and amoeboid movement. Exp. Cell Res.45, 570–584.

    Google Scholar 

  • Bovee, E. C., 1964: Morphological differences among pseudopodia of various small amebae and their functional significance. In: Primitive motile systems in cell biology (R. D. Allen andN. Kamiya, Eds.), 189–219. New York and London: Academic Press.

    Google Scholar 

  • Chapman-Andresen, C., 1962: Studies on pinocytosis in amoebae. C. R. Lab. Carlsberg33, 73–264.

    Google Scholar 

  • Czarska, L., andA. Grebecki, 1966: Membrane folding and plasma-membrane ratio in the movement and shape transformation inAmoeba proteus. Acta Protozoologica4, 201–239.

    Google Scholar 

  • Daneel, S., 1964: Identifizierung der kontraktiven Elemente im Cytoplasma vonAmoeba proteus. Naturwiss.51, 368–369.

    Google Scholar 

  • De Bruyn, P. P. H., 1947: Theories of amoeboid movement. Quart. Rev. Biol.22, 1–24.

    Google Scholar 

  • Goldacre, R. J., 1952: The folding and unfolding of protein molecules as a basis of osmotic work. Int. Rev. Cytol.1, 135–164.

    Google Scholar 

  • —, 1954: Excerpta Med.8, 408.

    Google Scholar 

  • —, 1956: The regulation of movement and polar organization inAmoeba by intracellular feedback. In: Proc. Ist. Int. Congr. Cybernetics, Namur 1956, 715–725. Paris: Gautier-Villars.

    Google Scholar 

  • —, 1957: How amoebae move. The New Scientist3, 23–25.

    Google Scholar 

  • —, 1961: The roll of the cell membrane in the locomotion of amoebae, and the source of the motive force and its control by feedback. Exp. Cell Res. Suppl.8, 1–16.

    Google Scholar 

  • —, 1964: On the mechanism and control of amoeboid movement. In: Primitive motile systems in cell biology (R. D. Allen andN. Kamiya, Eds.), 237–255. New York and London: Academic Press.

    Google Scholar 

  • —, andI. J. Lorch, 1950: Folding and unfolding of protein molecules in relation to cytoplasmic streaming amoeboid movement and osmotic work. Nature (London)166, 497–499.

    Google Scholar 

  • Grebecki, A., 1964: Modern lines in the study of amoeboid movement. Acta Protozoologica2, 379–402.

    Google Scholar 

  • Haberey, M., K. E. Wohlfarth-Bottermann undW. Stockem, 1969: Pinocytose und Bewegung von Amöben. VI. Kinematographische Untersuchungen über das Bewegungsverhalten der Zelloberfläche vonAmoeba proteus. Cytobiologie1, 70–84.

    Google Scholar 

  • Jahn, T. L., andR. A. Rinaldi, 1959: Protoplasmic movement in the foraminiferanAllogromia laticollaris; and a theorie of its mechanism. Biol. Bull.117, 100–118.

    Google Scholar 

  • —,J. Fonseca, andM. Landman, 1962: Proc. Amer. Soc. Cell Biol.2, 79.

    Google Scholar 

  • —,W. Harmon, andM. Landman, 1963: J. Protozoology10, 358.

    Google Scholar 

  • Jarosch, R., 1965: Über Kontakt und Verzweigung der Protein-Schrauben. Österr. Bot. Z.112, 500–542.

    Google Scholar 

  • —, 1966: On the behavior of rotating helices. In: Intracellular Transport. Symposia Int. Soc. Cell Biol.5, 275–300.

    Google Scholar 

  • —, 1968 a: Zur Dynamik feiner Pseudopodien von Hochmoor-Amöben. Protoplasma65, 363–377.

    Google Scholar 

  • —, 1968 b: Rotationen von Superschrauben in viskosen Lösungen. Modellversuche zur Entstehung der Transversalwellen an Geißeln und Protoplasmafibrillen. Biorheology5, 303–311.

    Google Scholar 

  • —, 1969: Lebendbeobachtungen an Bakteriengeißeln und ihre mögliche Bedeutung für die Interpretation der Dynamik endoplasmatischer Fibrillen. Mikroskopie25 (Kisser-Fest-schrift), 186–196.

    Google Scholar 

  • Jennings, H. S., 1904: Contributions to the study of the behavior of lower organism. 6. The movements and reactions ofAmoeba. Carnegie Inst. Washington Publ.16, 129–234.

    Google Scholar 

  • Käppner, W., 1961 a: Bewegungsphysiologische Untersuchungen an der AmöbeChaos chaos L. I. Der Einfluß des pH des Mediums auf das bewegungsphysiologische Verhalten vonChaos chaos L. Protoplasma53, 81–105.

    Google Scholar 

  • —, 1961 b: Bewegungsphysiologische Untersuchungen an der AmöbeChaos chaos L. II. Die Wirkung von Salyrgan, Cystein und ATP. Protoplasma53, 504–529.

    Google Scholar 

  • Kitching, J. A., 1964: The axopods of the sun animaculeActinophrys sol (Heliozoa). In: Primitive motile systems in cell biology (R. D. Allen andN. Kamiya, Eds.), 445–456. New York and London: Academic Press.

    Google Scholar 

  • Kollmann, R., I. Dörr, andH. Kleinig, 1970: Protein filaments—structural components of the phloem exudate. Planta (Berl.)95, 86–94.

    Google Scholar 

  • Mast, S. O., 1926: Structure, movement, locomotion, and stimulation inAmoeba. J. Morphol.41, 347–425.

    Google Scholar 

  • Nachmias, V. T., 1965: A note on the surface coat of the amebaChaos chaos. Exp. Cell Res.38, 128–132.

    Google Scholar 

  • Overton, J., A. Eichholz, andR. K. Crane, 1965: Studies on the organization of the brush border in intestinal epithelial cells. II. Fine structure of fractions of tris-disrupted hamster brush borders. J. Cell Biol.26, 693–706.

    Google Scholar 

  • Pitts, R. F., 1933: Biol. Bull.64, 418.

    Google Scholar 

  • Pollard, T. D., E. Shelton, R. R. Weihing, andE. D. Korn, 1970: Ultrastructural characterization of F-actin isolated fromAcanthamoeba castellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy mero-myosin. J. Molecular Biol.50, 91–97 (1970).

    Google Scholar 

  • Schaeffer, A. A., 1916: Arch. Protistenk.37, 204.

    Google Scholar 

  • —, 1917: J. Animal Behavior7, 220.

    Google Scholar 

  • Schulze, F. E., 1875: Rhizopodenstudien. Arch. Mikroskop. Anat.11, 329–353.

    Google Scholar 

  • Seravin, L. N., 1964: A critical survey of the modern state of the problem of ameboid movement. Cytologia6, 653–667 (russisch).

    Google Scholar 

  • Stockem, W., K. E. Wohlfarth-Bottermann undM. Haberey, 1969: Pinocytose und Bewegung von Amöben. V. Konturveränderung und Faltungsgrad der Zelloberf:ache vonAmoeba proteus. Cytobiologie1, 37–57.

    Google Scholar 

  • Watters, C., 1968: Studies on the motility of the Heliozoa. I. The locomotion ofActinosphaerium eichhorni andActinophrys sp. J. Cell Sci.3, 231–244.

    Google Scholar 

  • Wohlfarth-Bottermann, K. E., 1964: Cell structures and their significance for ameboid movement. Int. Rev. Cytology16, 61–131.

    Google Scholar 

  • Wohlman, A., andR. D. Allen, 1968: Structural organization associated with pseudopod extension and contraction during cell locomotion inDifflugia. J. Cell Sci.3, 105–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarosch, R. Vergleichende Studien zur amöboiden Beweglichkeit. Protoplasma 72, 79–100 (1971). https://doi.org/10.1007/BF01281013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01281013

Navigation