Skip to main content
Log in

High-resolution electron microscopy on ultrathin sections of cellulose microfibrils generated by glomerulocytes in Polyzoa vesiculiphora

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Glomerulocyte cellulosic bundles of Polyzoa vesiculiphora were investigated by microdiffraction and high-resolution electron microscopy. In each bundle, hundreds of cellulose microfibrils, having a rectangular cross-sectional shape, are packed regularly with their 0.6 nm lattice planes parallel to each other. Lattice images reveal that the 0.6 nm plane is parallel to the longer edge of the cross section which is similar to the lattice organization of cellulose with a squarish cross section in Valonia spp. More interestingly, all the microfibrils in a bundle have the same directionality of crystallographic c-axis, which suggests that the biosynthesis of the microfibrils within particular bundle occurs unidirectionally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atalla RH, VandelHart DL (1984) Native cellulose: a composite of two crystalline forms. Science 223: 283–285

    Article  CAS  Google Scholar 

  • Chanzy H, Henrissat B (1985) Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett 184: 285–288

    Article  CAS  Google Scholar 

  • Daele YV, Revol JF, Gaill F, Goffinet G (1992) Characterization and supramolecular architecture of the cellulose-protein fibrils in the tunic of the sea peach ( Halocynthia papillosa, Ascidiacea, Urochordata). Biol Cell 76: 87–96

    Article  Google Scholar 

  • Frey-Wyssling A (1954) The fine structure of cellulose microfibrils. Science 119: 80–82

    Article  CAS  Google Scholar 

  • Fujiyoshi Y, Mizusaki T, Morikawa K, Yamagishi H, Aoki Y, Kihara H, Harada Y (1991) Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy 38: 241–251

    Article  Google Scholar 

  • Gaill F, Persson J, Sugiyama J, Vuong R, Chanzy H (1992) The chitin system in the tube of deep sea hydrothermal vent worms. J Struct Biol 109: 116–128

    Article  CAS  Google Scholar 

  • Goto T, Harada H, Saiki H (1973) Cross-sectional view of microfibrils in Valonia ( Valonia macrophysa). Mokuzai Gakkaishi 19: 463–468

    CAS  Google Scholar 

  • Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23: 1807–1810

    Article  CAS  Google Scholar 

  • Itoh T, Brown RM Jr (1984) The assembly of cellulose microfibrils in Valonia macrophysa Kütz. Planta 160: 372–381

    Article  CAS  Google Scholar 

  • Kim NH, Herth W, Vuong R, Chanzy H (1996) The cellulose system in the cell wall of Micrasterias. J Struct Biol 117: 195–203

    Article  CAS  Google Scholar 

  • Kimura S, Itoh T (1995) Evidence for the role of the glomerulocyte in cellulose synthesis in the tunicate, Metandrocarpa uedai. Protoplasma 186: 24–33

    Article  CAS  Google Scholar 

  • — — (1997) Cellulose network of hemocoel in selected compound styelid ascidians. J Electron Microsc 46: 327–335

    Article  CAS  Google Scholar 

  • Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94: 9091–9095

    Article  CAS  Google Scholar 

  • Larsson T, Westermark U, Iversen T (1995) Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS13C-NMR spectroscopy. Carbohydr Res 278: 339–343

    Article  CAS  Google Scholar 

  • Okamoto T, Sugiyama J, Itoh T (1996) Structural diversity of cellulose in Ascidian. Wood Res 83: 27–29

    CAS  Google Scholar 

  • Preston RD, Cronshaw J (1958) Constitution of the fibrillar and non-fibrillar components of the wall of Valonia ventricosa. Nature 181: 248–250

    Article  CAS  Google Scholar 

  • Revol JF (1982) On the cross sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polymer 2: 123–134

    Article  CAS  Google Scholar 

  • —, Goring DAI (1983) Directionality of the fiber c-axis of cellulose crystallites in microfibrils of Valonia ventricosa. Polymer 24: 1547–1550

    Article  CAS  Google Scholar 

  • —, Daele YV, Gaill F (1990) On the cross-sectional shape of cellulose crystallites in the tunicate Halocynthia papillosa. In: Proceedings of the XIIth International Congress for Electron Microscopy. San Francisco Press, San Francisco, pp 566–567

    Google Scholar 

  • Shillito B, Lübbering B, Lechaire JP, Childress JJ, Gaill F (1995) Chitin localization in the tube secretion system of a repressurized deep-sea tube worm. J Struct Biol 114: 67–75

    Article  CAS  Google Scholar 

  • Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from the ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166: 161–168

    Article  CAS  Google Scholar 

  • —, Vuong R, Chanzy H (1991) An electron diffraction study on the two crystalline phases occurring in native cellulose from algal cell wall. Macromolecules 24: 4168–4175

    Article  CAS  Google Scholar 

  • VandelHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state13C NMR, Macromolecules 17: 1465–1472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbert, W., Sugiyama, J., Kimura, S. et al. High-resolution electron microscopy on ultrathin sections of cellulose microfibrils generated by glomerulocytes in Polyzoa vesiculiphora . Protoplasma 203, 84–90 (1998). https://doi.org/10.1007/BF01280590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280590

Keywords

Navigation