Skip to main content
Log in

Three-dimensional periodic cubic membrane structure in the mitochondria of amoebae Chaos carolinensis

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Through computer simulation of images produced by the transmission electron microscope (TEM), we have identified three-dimensional periodic cubic membrane structures in giant amoebae ( Chaos carolinensis) mitochondria. The cubic membranes are based on the highly curved three-dimensional periodic cubic surfaces, sharing the same geometry of mathematically defined periodic minimal surfaces. The double-membrane structures identified here divide space into three separate and convoluted subspaces. Specimen preparation, specifically the tendency to cut oblique sections, of this membrane crystal has added to the complexity of the resulting TEM projections and until now prevented researchers from recognizing them. It is the added complexity of the oblique sections, though, that allows us to match the TEM projection to a computer simulation of the same with confidence. In this study, formation of cubic membrane structures in amoeba mitochondria was found to be dependent on diet. The cubic structures only occurred in the absence of food, and disappeared in the presence of food, suggesting a structural adaptation and possible advantages for amoeba's survival in nature. The verification of mathematically well-defined structures in unfed amoeba mitochondria is also important to the understanding of the mitochondrial bioenergetics in relation to the topology of the inner membrane, where major cellular energy production as well as free-radical generation are taking place. This understanding may carry great impact upon human health as far as aging and age-related degenerative diseases are concerned, especially as mitochondrial disorders have been implicated in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G:

gyroid

D:

double diamond

P:

primitive

TEM:

transmission electron microscopy

PCS:

periodic cubic surface

References

  • Anderson DM, Bellare J, Hoffman JT, Hoffman D, Gunther J, Thomas EL (1992) Algorithms for the computer simulation of two-dimensional projections form structures determined by dividing surfaces. J Colloid Interface Sci 148: 398–414

    Google Scholar 

  • Andresen N (1956) Cytological investigations on the giant amoeba Chaos chaos L. C R Lab Carlsberg Ser Chim 29: 436–545

    Google Scholar 

  • Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133: 1251–1263

    CAS  PubMed  Google Scholar 

  • Bradbury PC (1987) Protozoan adaptations for survival. In: Henis Y (ed) Survival and dormancy of microorganism. Wiley, New York, pp 267–299

    Google Scholar 

  • Daniels EW, Breyer E (1968) Starvation effects on the ultrastructure of amoeba mitochondria. Z Zellforsch 91: 59–169

    Google Scholar 

  • Davis ME (1993) Organizing for better synthesis. Nature 364: 391–392

    Google Scholar 

  • Deng Y (1998) Transmission electron microscopy studies of cubic membrane morphologies in chloroplasts of the green algae Zygnema and mitochondria of the amoeba Chaos carolinensis. PhD dissertation, State University of New York at Buffalo, Buffalo, NY, USA

    Google Scholar 

  • —, Landh T (1995) The cubic gyroid-based membrane structure of the chloroplast in the Zygnema (Chlorophyceae Zygnematles). Zool Stud 34 Suppl 1: 175–177

    Google Scholar 

  • Dieuaide M, Couée I, Pradet A, Raymond P (1993) Effect of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid β-oxidation and acyl-CoA dehydrogenase activity in a higher plant. Biochem J 296: 199–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engström S (1990) Drug delivery from cubic and other lipid-water phases. Lipid Technol 2: 42–45

    Google Scholar 

  • Ericsson B, Larsson K, Fontell K (1983) A cubic protein-monoolein-water phase. Biochim Biophys Acta 729: 23–27

    CAS  PubMed  Google Scholar 

  • Holter H, Zeuthen E (1948) Metabolism and reduced weight in starving Chaos chaos. C R Lab Carlsberg Ser Chim 26: 277–296

    CAS  Google Scholar 

  • Journet E, Bligny R, Douce R (1986) Biochemical changes during sucrose deprivation in higher plant cells. J Biol Chem 261: 3193–3199

    CAS  PubMed  Google Scholar 

  • Kalous M, Drahota Z (1996) The role of mitochondria in aging. Physiol Res 45: 351–359

    CAS  PubMed  Google Scholar 

  • Lai Y-K, Lee W-C, Hu C-H, Hammond GL (1996) The mitochondria are recognition organelles of cell stress. J Surg Res 62: 90–94

    CAS  PubMed  Google Scholar 

  • Landau EM, Rosenbusch JP (1996) Lipid cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 93: 14532–14535

    CAS  PubMed  Google Scholar 

  • Lambert CA, Radzilowski LL, Thomas EL (1996) Triply periodic level surfaces as models for cubic tricontinuous block copolymer morphologies. Philos Trans R Soc Lond A Math Phys Sci 354: 2009–2023

    CAS  Google Scholar 

  • Landh T (1995) From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers. FEBS Lett 369: 13–17

    CAS  PubMed  Google Scholar 

  • — (1996) Cubic cell membrane architectures: taking another look at membrane bound cell spaces. PhD dissertation, University of Lund, Lund, Sweden

    Google Scholar 

  • Larsson K (1989) Cubic lipid-water phases: structures and biomembrane aspects. J Phys Chem 93: 7304–7314

    CAS  Google Scholar 

  • —, Fontell K, Krog N (1980) Structural relationships between lamellar, cubic and hexagonal phases in monoglyceride water systems: possibility of cubic structures in biological systems. Chem Phys Lipids 27: 321–328

    CAS  Google Scholar 

  • Lindblom G, Rilfors L (1989) Cubic phases and isotropic structures formed by membrane lipids: possible biological relevance. Biochim Biophys Acta 988: 221–256

    CAS  Google Scholar 

  • Luft R, Landau BR (1995) Mitochondrial medicine. J Int Med 238: 405–421

    CAS  Google Scholar 

  • Luzzati V, Spegt PA (1967) Polymorphism of lipids. Nature 215: 701–704

    CAS  Google Scholar 

  • Mannella CA, Marko M, Penczek P, Barnard D, Frank J (1994) The internal compartmentation of rat-liver mitochondria: tomographic study using high-voltage transmission electron microscope. Microsc Res Tech 27: 278–283

    CAS  PubMed  Google Scholar 

  • — —, Buttle K (1997) Reconsidering mitochondrial structure: new views of an old organelle. Trends Biochem Sci 22: 37–38

    CAS  PubMed  Google Scholar 

  • Palade G (1952) The fine structure of mitochondria. Anat Rec 114: 427–451

    CAS  PubMed  Google Scholar 

  • Pappas GD, Brandt PW (1996) I. Fine structure of complex patterns in the mitochondria of Pleomyxa carolinesis Wilson ( Chaos chaos L.). J Biophys Biochem Cytol 6: 85–90

    Google Scholar 

  • Pearce P (1978) Structure in nature is a strategy for design. MIT Press, Cambridge, Mass

    Google Scholar 

  • Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Fery T (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 119: 260–272

    CAS  PubMed  Google Scholar 

  • Richeter C, Schweizer M, Cossarizza A, Franceschi C (1996) Control of apoptosis by the cellular ATP level. FEBS Lett 378: 107–110

    Google Scholar 

  • Schoen AH (1970) Infinite periodic minimal surfaces without self-intersections. NASA Technical Note TN D-5541, National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Schwarz HA (1890) Gesammelte mathematische Abhandlungen, vol 1. Springer, Berlin

    Google Scholar 

  • Seddon J (1990) Structure of the inverted hexagonal (HII) phase and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1031: 1–60

    CAS  PubMed  Google Scholar 

  • Sjöstrand FS (1953) Electron microscopy of mitochondria and cytoplasmic double membranes. Nature 171: 30–31

    PubMed  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273: 59–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson GA Jr (1967) Studies of membrane formation in Tetrahymena pryriformis I: rates of phospholipid biosynthesis. Biochemistry 6: 2015–2022

    CAS  PubMed  Google Scholar 

  • von Schnering HG, Nesper R (1991) Nodal surfaces of Fourier series: fundamental invariants of structured matter. Z Phys B Condensed Matter 83: 407–412

    Google Scholar 

  • Weindruch R (1996) Caloric restriction and aging. Sci Am 274: 46–52

    CAS  PubMed  Google Scholar 

  • Wilber CG (1946) The Iipids in Pleomyxa carolinensis. Biol Bull 91: 235

    PubMed  Google Scholar 

  • Wojtczak L, Schönfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183: 41–57

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Mieczkowski, M. Three-dimensional periodic cubic membrane structure in the mitochondria of amoebae Chaos carolinensis . Protoplasma 203, 16–25 (1998). https://doi.org/10.1007/BF01280583

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280583

Keywords

Navigation