Skip to main content
Log in

Shape of phosphofructokinase fromEscherichia coli in solution

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Small angle X-ray scattering measurements and electron microscopic studies were carried out onE. coli phosphofructokinase (E.C. 2.7.1.11; ATP: D-fructose-6-phosphate-1-phosphotransferase). The results suggest a tetrahedral arrangement of the protomers resulting in a radius of gyration of the enzyme of R=34.6 Å and a Stokes' radius of R0=44.0 Å. The stereochemical arrangement of the four protomers, each of a molecular weight of 35,000, within theE. coli enzyme was further substantiated by a comparison of theoretical scattering functions with the experimental scattering measurements in dilute solutions of phosphofructokinase under physiological conditions. Moreover, from other hydrodynamic measurements,e.g., intrinsic viscosity and sedimentation coefficient, theMandelkern-Scheraga factor, β, was calculated to be 2,095×106, which is significantly lower than the β0 for rigid spheres of 2,112×106. This low β-value might be due to a considerable porosity of the four protomers for mobile water molecules. The β-value of 2,095×106 is an indication of a porous sphere of almost uniform density at aDebye shielding ratio of 6.5, corresponding to a sphere radius of 22.0 Å for one protomer and an inverse hydrodynamic shielding length of 0.45 Å−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaronson, R. P., andC. Frieden, 1972: Rabbit muscle phosphofructokinase: Studies on the polymerisation. The behavior of the enzyme at pH 8, pH 6 and intermediate pH values. J. biol. Chem.247, 7502–7504.

    Google Scholar 

  • Blangy, D., H. Buc, andJ. Monod, 1968: Kinetics of the allosteric interaction of phosphofructokinase fromE. coli. J. molec. Biol.31, 13–35.

    Google Scholar 

  • —, 1968: Phosphofructokinase fromE. coli.: Evidence for a tetrameric structure of the enzyme. FEBS-Letters2, 109–111.

    Google Scholar 

  • Bock, P. E., andC. Frieden, 1976 a: Phosphofructokinase; I. Mechanism of the pHdependent inactivation and reactivation of the rabbit muscle enzyme. J. biol. Chem.251, 5630–5636.

    Google Scholar 

  • —, andE. Frieden, 1976 b: Phosphofructokinase; II. Role of ligands in pH-dependent structural changes of the rabbit muscle enzyme. J. biol. Chem.251, 5637–5643.

    Google Scholar 

  • —, andC. Frieden, 1976 c: Phosphofructokinase; III. Correlation of the regulatory kinetic and molecular properties of the rabbit muscle enzyme. J. biol. Chem.251, 5644–5647.

    Google Scholar 

  • Brand, I. A., M. K. Müller, C. Unger, andH. D. Sölling, 1976:In vivo andin vitro interconversions of active and inactive forms of phosphofructokinase in rat liver. FEBSLetters68, 271–274.

    Google Scholar 

  • Cass, K. H., andE. Stellwagen, 1975: A thermostable phosphofructokinase from the extreme thermophile Thermus X-1. Arch. Biochem. Biophys.171, 682–694.

    Google Scholar 

  • Debye, P., 1915: Zerstreuung von Röntgenstrahlen. Ann. Physik46, 809–823.

    Google Scholar 

  • —, 1930: Röntgeninterferenzen und Atomgröße. Physik. Z.31, 419–428.

    Google Scholar 

  • —, andA. M. Bueche, 1953: Intrinsic viscosity, defusion and sedimentation rate of polymers insolution. J. amer. chem. Soc.75, 179–194.

    Google Scholar 

  • Guinier, A., 1939: La diffraction des sayons X aux tres petit angles: application àl'étude de phenomen ultramicroscopiques. Ann. Phys.12, 161–237.

    Google Scholar 

  • —, andG. Fournet, 1955: In: Small-angle Scattering of X-rays. New York, Inc.

    Google Scholar 

  • Kahovec, L., G. Porod, andH. Ruck, 1953: Röntgenkleinwinkeluntersuchungen an dicht gepackten kolloiden Systemen. Kolloid-Z.133, 16–26.

    Google Scholar 

  • Kono, N., K. Uyeda, andR. M. Oliver, 1973: Chicken liver phosphofructokinase. I. Crystallization and physico-chemical properties. J. biol. Chem.248, 8592–8602.

    Google Scholar 

  • — —, 1973: Chicken liver phosphofructokinase. II. Cold inactivation. J. biol. Chem.243, 8603–8609.

    Google Scholar 

  • Kauzmann, W., K. Moore, andD. Schultz, 1974: Protein densities from X-ray crystallographic coordinates. Nature248, 447–449.

    Google Scholar 

  • Koshland, D. E., G. Nemethy, andD. Filmer, 1966: Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry5, 365–385.

    Google Scholar 

  • Lad, P. M., andG. G. Hammes, 1974: Physical and chemical properties of rabbit muscle phosphofructokinase cross-linked with dimethylsuberimidate. Biochemistry13, 4530–4537.

    Google Scholar 

  • —,D. E. Hill, andG. G. Hammes, 1973: Influence of allosteric ligands on the activity and aggregation of rabbit muscle phosphofructokinase. Biochemistry12, 4303–4309.

    Google Scholar 

  • Lake, J. A., 1967: An interative method of slit correcting small-angle X-ray data. Acta Cryst.23, 191–194.

    Google Scholar 

  • Mansour, T. E., 1972: Phosphofructokinase. In: Current topics in cellular regulation (Horecker, B. L., E. R. Stadtman, eds.), Vol. 5, pp. 1–46. New York-London: Acacemic Press.

    Google Scholar 

  • Marschke, Ch., andR. W. Bernlohr, 1973: Purification and characterization of phosphofructokinase ofBacillus licheniformis. Arch. Biochem. Biophys.156, 1–16.

    Google Scholar 

  • Monod, J., J. P. Changeux, andFr. Jacob, 1963: Allosteric proteins and cellular control system. J. molec. Biol.6, 306–329.

    Google Scholar 

  • Paradies, H. H., andA. Franz, 1976: Geometry of the protein S 4 fromE. coli. ribosomes. Eur. J. Biochem.67, 23–30.

    Google Scholar 

  • —, 1971: Polymorphism of serine specific transfer ribonucleic acid. Eur. J. Biochem.18, 530–540.

    Google Scholar 

  • —, andW. Vettermann, 1976 b: On the quaternary structure of native rabbit muscle phosphofructokinase. Biochem. biophys. Res. Comm.71, 520–526.

    Google Scholar 

  • —,B. Zimmer, andG. Werz, 1976 a: Small-angle X-ray scattering of D-ribulose-1,5-biphosphate carboxylase fromDasycladus clavaeformis ROTH (Ag.) in solution. Biochem. biophys. Res. Comm.74, 397–404.

    Google Scholar 

  • - and W.Vettermann, 1977: A physical model of the polymers of phosphofructokinase from rabbit muscle. Submitted to Proc. nat. Acad. Sci. (U.S.A.).

  • Porod, G., 1951: Die Röntgenkleinwinkelstreuung von dicht gepackten kolloiden Systemen, I. Teil: Kolloid-Z.124, 73–114. II. Teil: Kolloid-Z.125, 51–57 und 108–122 (1952).

    Google Scholar 

  • Vettermann, W., and H. H.Paradies, 1977: Isolation and characterization of phosphofructokinase fromDunaliella salina. Arch. Biochem. Biophys., in press.

  • Woodward, C. K., L. M. Eillis, andA. Rosenberg, 1975 a: J. biol. Chem250, 432–439, 440–444. I. Solvent Acessibility in Folded Proteins, 432–439, J. biol. Chem.250. II. The Solvent Dependence of Hydrogen Exchange Kinetics of Folded Proteins 440–444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fachrichtung Biochemie der Pflanzen und

Fachrichtung Feinstrukturforschung und Elektronenmikroskopie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paradies, H.H., Vettermann, W. & Werz, G. Shape of phosphofructokinase fromEscherichia coli in solution. Protoplasma 92, 43–56 (1977). https://doi.org/10.1007/BF01280199

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280199

Keywords

Navigation