Skip to main content
Log in

Propagated disturbances of transverse potential gradient in intracellular fibrils as the source of motive forces for longitudinal transport in cells

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

It is proposed as a working hypothesis that conformational changes propagated like waves along intracellular fibrils (tubules, microtubules, microfilaments) have an electric component,i.e., there are waves of disturbance of electric potential in the fibrils. The paper considers the unavoidable consequences of the wave. The latter is accompanied by local electric field in the boundary layer of cytoplasmic fluid. Both positively and negatively charged particles may be attracted to the fibril in certain regions of the field and, being attracted, the particle may be under the action of longitudinal component of electric force. When the force is strong enough to move the particle with wave velocity, the particle will travel smoothly along the fibril, otherwise the movement will be saltatory or of agitation type. Net electroosmotic flow in one direction in the boundary layer of fluid may be expected when the waves are propagated in series. Turbulent motion of the fluid caused by the waves may provide the basis for activated diffusion. Asymmetry of the wave may account for polar transport of this sort. The electric field transmitted along the fibril across a sieve pore in phloem may facilitate electroosmotically the flow through the pore. Quantitative requirements of the hypothesis that electric field generated by the waves may account for different aspects of longitudinal transport in cells are apparently met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. D., 1964: Cytoplasmic streaming and locomotion in marineForaminifera. Primitive Motile Systems in Cell Biology (R. D. Allen andN. Kamiya, eds.), 407–432. New York: Acad. Press.

    Google Scholar 

  • Ambrose, E. J., 1965: Cell movements. Endeavour91, 27–32.

    Google Scholar 

  • Behnke, H. D., 1969: Über den Feinbau und die Ausbreitung der Siebröhren-Plasmafilamente und über Bau und Differenzierung der Siebporen bei einigen Monocotylen und beiNuphar. Protoplasma68, 377–402.

    Google Scholar 

  • Byers, B., andD. H. Abramson, 1968: Cytokinesis in HeLa: Post-telophase delay and microtubule-associated motility. Protoplasma66, 413–435.

    PubMed  Google Scholar 

  • Canny, M. J., 1962: The mechanism of translocation. Ann. Bot., N.S.,26, 603–617.

    Google Scholar 

  • —, andO. M. Philips, 1963: Quantitative aspects of a theory of translocation. Ann. Bot., N.S.,27, 379–402.

    Google Scholar 

  • Cronshaw, J., andK. Esau, 1968: Cell division in leaves ofNicotiana. Protoplasma65, 1–24.

    PubMed  Google Scholar 

  • — —, 1968: Protein in the phloem ofCucurbita II. The P protein of mature sieve elements. J. Cell Biol.38, 292–303.

    PubMed  Google Scholar 

  • Fensom, D. S., 1957: The bioelectric potentials and their functional significance I. An electrokinetic theory of transport. Canad. J. Bot.35, 573–582.

    Google Scholar 

  • Hayashi, T., 1964: Role of the cortical gel layer in cytoplasmic streaming. Primitive Motile Systems in Cell Biology (R. D. Allen andN. Kamiya, eds.), 19–29. New York: Acad. Press.

    Google Scholar 

  • Helder, R. J., 1967: Translocation inVallisneria spiralis. Encyclopedia of Plant Physiol. (W. Ruhland, ed.)XIII, 20–43. Berlin: Springer-Verlag.

    Google Scholar 

  • Jarosch, R., 1956: Plasmaströmung und Chloroplastenrotation bei Characeen. Phyton (Argentina)6, 87–107.

    Google Scholar 

  • —, 1964: Screw-mechanical basis of protoplasmic movement. Primitive Motile Systems in Cell Biology (R. D. Allen andN. Kamiya, eds.), 559–622. New York: Acad. Press.

    Google Scholar 

  • Johnson, F. H., H. Eyring, andM. J. Polisar, 1954: The kinetic basis of molecular biology. Chapters 11 and 12. New York: J. Wiley & Sons.

    Google Scholar 

  • Johnson, R. R. C., 1968: Microfilaments in pores between frozen-etched sieve elements. Planta81, 314–332.

    Google Scholar 

  • Kamiya, N., 1959: Protoplasmic streaming. ProtoplasmatologiaVIII/3 a. Wien: Springer-Verlag.

    Google Scholar 

  • —, 1962: Protoplasmic streaming. Encyclopedia of Plant Physiology (W. Ruhland, ed.)XVII/2, 979–1035. Berlin: Springer-Verlag.

    Google Scholar 

  • Kavanau, J. L., 1965: Structure and function in biological membranesII. San Francisco: Holden-Day, Inc.

    Google Scholar 

  • Kishimoto, U., andH. Akabori, 1959: Protoplasmic streaming of an internodal cell ofNitella flexilis. Its correlation with electric stimulus. J. Gen. Physiol.42, 1167–1183.

    PubMed  Google Scholar 

  • Kuroda, K., 1964: Behavior of naked cytoplasmic drops isolated from plant cells. Primitive Motile Systems in Cell Biology (R. D. Allen andN. Kamiya, eds.), 31–41. New York: Acad. Press.

    Google Scholar 

  • Lorente de Nó, R., 1947: A study of nerve physiology. Chapter XVI. Studies from the Rockefeller Institute for Medical Research132, 384–477.

    Google Scholar 

  • Mahlberg, P. G., 1964: Rates of organelle movement in streaming cytoplasm of plant tissue culture cells. Primitive Motile Systems in Cell Biology (R. D. Allen andN. Kamiya, eds.), 43–68. New York: Acad. Press.

    Google Scholar 

  • Mitchell, P., 1961: Approaches to the analysis of specific membrane transport. Biological Structure and Function (T. W. Goodwin andO. Lindberg, eds.)II, 581–604. London: Acad. Press.

    Google Scholar 

  • —, 1966: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biolog. Rev.41, 445–502.

    Google Scholar 

  • Mishra, M., andD. C. Spanner, 1970: The fine structure of the sieve tubes ofSalix caprea L. and its relation to the electroosmotic theory. Planta90, 43–56.

    Google Scholar 

  • Mueller, P., andD. D. Rudin, 1963: Induced excitability in reconstituted cell membrane structure. J. Theor. Biol.4, 268–280.

    PubMed  Google Scholar 

  • — —, 1968: Action potential induced in biomolecular lipid membranes. Nature217, 713–719.

    PubMed  Google Scholar 

  • Nagai, R., andL. I. Rebhun, 1966: Cytoplasmic microfilaments in streamingNitella cells. J. Ultrastruct. Res.14, 571–589.

    PubMed  Google Scholar 

  • Rebhun, L. I., 1967: Structural aspects of saltatory particle movement. J. Gen. Physiol.50, 223–239.

    PubMed  Google Scholar 

  • Rinaldi, R. A., andT. L. Jahn, 1964: Shadowgraphs of protoplasmic movement inAllogromia laticollaris and a correlation of this movement to striated muscle contraction. Protoplasma58, 369–390.

    Google Scholar 

  • Rosenfalck, P., 1969: Intra- and extracellular potential fields of active nerve and muscle fibres. Acta Physiologica Scandinavica, Suppl. 321.

  • Roth, L. E., D. J. Pihlaja, andY. Shigenaka, 1970: Microtubules in Heliozoan axopodium I. The gradion hypothesis of allosterism in structural proteins. J. Ultrastruct. Res.30, 7–37.

    PubMed  Google Scholar 

  • —, andJ. Chakraborty, 1966: Anaphase structure in mitotic cells typified by spindle elongation. J. Ultrastruct. Res.14, 460–483.

    PubMed  Google Scholar 

  • Schmitt, F. O., 1968: Fibrous proteins—neuronal organelles. Proc. Nat. Acad. Sci. (U.S.A.)60, 1092–1101.

    Google Scholar 

  • Seifriz, I. W., 1952: The rheological properties of protoplasm. Deformation and Flow in Biological Systems (A. Frey-Wyssling, ed.), 2–156. Amsterdam: N. Holland Publ. Comp.

    Google Scholar 

  • Seifriz, I. W., 1953: Mechanism of protoplasmic movement. Nature171, 1136–1138.

    PubMed  Google Scholar 

  • Shashoua, V. E., 1967: Electrically active polyelectrolyte membranes. Nature215, 846–847.

    Google Scholar 

  • Spanner, D. C., 1958: The translocation of sugar in sieve tubes. J. Exp. Bot.9, 332–342.

    Google Scholar 

  • Thaine, R., 1962: A translocation hypothesis based on the structure of plant cytoplasm. J. Exp. Bot.13, 152–160.

    Google Scholar 

  • —, 1965: Surface associations between particles and the endoplasmic reticulum in protoplasmic streaming. New Phytol.64, 118–130.

    Google Scholar 

  • Thornburg, W., 1967: Mechanism of biological motility. Theoretical and Experimental Biophysics (A. Cole, ed.). London: E. Arnold Publishers Ltd.

    Google Scholar 

  • Umrath, K., 1933: Der Erregungsvorgang beiNitella mucronata. Protoplasma17, 258–300.

    Google Scholar 

  • Weatherley, P. E., A. J. Peel, andG. P. Hill, 1959: The physiology of the sieve tube. J. Exp. Bot.10, 1–16.

    Google Scholar 

  • Wohlfarth-Bottermann, K. E., 1961: Cytologische Studien VIII. Zum Mechanismus der Cytoplasmaströmung in dünnen Fäden. Protoplasma54, 1–26.

    Google Scholar 

  • Wooding, F. B. P., 1967: Fine structure and development of phloem sieve tube content. Protoplasma64, 315–324.

    Google Scholar 

  • Zimmermann, M. H., 1969: Translocation velocity and specific mass transfer in the sieve tubes ofFraxinus americana L. Planta84, 272–278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejnowicz, Z. Propagated disturbances of transverse potential gradient in intracellular fibrils as the source of motive forces for longitudinal transport in cells. Protoplasma 71, 343–364 (1970). https://doi.org/10.1007/BF01279681

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279681

Keywords

Navigation