Skip to main content
Log in

Caves and labyrinths: caveolae and transverse tubules in skeletal muscle

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Caveolins are small integral membrane proteins with a vital role in the formation and function of caveolae. In this review, the role of caveolin-3, a predominantly muscle-specific member of the caveolin family, will be examined. We speculate that insights into the mechanism of caveolae formation may give clues into the formation of another plasma membrane domain, the transverse-tubule system of muscle cells and propose a role for cholesterol-enriched lipid “rafts” in this process. In addition, we review recent findings regarding caveolin-3 in differentiated muscle cells and, particularly, in dystrophic muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DIG:

detergent-insoluble glycosphingolipid-enriched complex

DPC:

dystrophin protein complex

eNOS/nNOS:

endothelial/neuronal nitric oxide synthase

pTT:

precursor transverse tubule

T-tubule:

transverse tubule

References

  • Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36: 10944–10953

    Google Scholar 

  • Anderson HA, Chen Y, Norkin LC (1996) Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 7: 1825–1834

    Google Scholar 

  • Bist A, Fielding PE, Fielding CJ (1997) Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc Natl Acad Sci USA 94: 10693–10698

    Google Scholar 

  • Bonilla E, Fischbeck K, Schotland DL (1981) Freeze-fracture studies of muscle caveolae in human muscular dystrophy. Am J Pathol 104: 167–173

    Google Scholar 

  • Brown D (1993) The tyrosine kinase connection: how GPI-anchored proteins activate T cells. Curr Opin Immunol 5: 349–354

    Google Scholar 

  • Carozzi A, Ikonen E, Lindsay M, Parton RG (2000) Role of cholesterol in developing T-tubules: analogous mechanisms for tubule and caveolae biogenesis. Traffic 1: 326–341

    Google Scholar 

  • Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain: implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272: 6525–6533

    Google Scholar 

  • Crosbie RH, Yamada H, Venzke DP, Lisanti MP, Campbell KP (1998) Caveolin-3 is not an integral component of the dystrophin glycoprotein complex. FEBS Lett 427: 279–282

    Google Scholar 

  • Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127: 915–934

    Google Scholar 

  • Emans N, Gorvel J-P, Walter C, Gerke V, Kellner R, Griffiths G, Gruenberg J (1993) Annexin II is a major component of fusogenic endosomal vesicles. J Cell Biol 120: 1357–1369

    Google Scholar 

  • Ezerman EB, Ishikawa H (1967) Differentiation of the sarcoplasmic reticulum and T-system in developing chick skeletal muscle in vitro. J Cell Biol 35: 405–420

    Google Scholar 

  • Feron O (1999) Intracellular localization and activation of endothelial nitric oxide synthase. Curr Opin Nephrol Hypertens 8: 55–59

    Google Scholar 

  • Fielding CJ, Fielding PE (1997) Intracellular cholesterol transport. J Lipid Res 38: 1503–1521

    Google Scholar 

  • —, Bist A, Fielding PE (1997) Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc Natl Acad Sci USA 94: 3753–3758

    Google Scholar 

  • Fielding PE, Fielding CJ (1995) Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry 34: 14288–14292

    Google Scholar 

  • Flucher BE (1992) Structural analysis of muscle development: transverse tubules, sarcoplasmic reticulum, and the triad. Dev Biol 154: 245–260

    Google Scholar 

  • —, Terasaki M, Chin H, Beeler T, Daniels MP (1991) Biogenesis of transverse tubules in skeletal muscle in vitro. Dev Biol 145: 77–90

    Google Scholar 

  • —, Takekura H, Franzini-Armstrong C (1993) Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev Biol 160: 135–147

    Google Scholar 

  • Fra AM, Williamson E, Simons K, Parton RG (1994) Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 269: 30745–30748

    Google Scholar 

  • — — — — (1995a) De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci USA 92: 8655–8659

    Google Scholar 

  • —, Masserini M, Palestini P, Sonnino S, Simons K (1995b) A photoreactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Lett 375: 11–14

    Google Scholar 

  • Franzini-Armstrong C (1991) Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Dev Biol 146: 353–362

    Google Scholar 

  • —, Landmesser L, Pilar G (1975) Size and shape of transverse tubule openings in frog twitch muscle fibres. J Cell Biol 64: 493–497

    Google Scholar 

  • Friedrichson T, Kurzchalia TV (1998) Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394: 802–805

    Google Scholar 

  • Hailstones D, Sleer LS, Parton RG, Stanley KK (1998) Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res 39: 369–379

    Google Scholar 

  • Hancock JF, Paterson H, Marshall CJ (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63: 133–139

    Google Scholar 

  • Harder T, Simons K (1997) Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 9: 534–542

    Google Scholar 

  • —, Kellner R, Parton RG, Gruenberg J (1997) Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol Biol Cell 8: 533–545

    Google Scholar 

  • —, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141: 929–942

    Google Scholar 

  • Henley JR, Krueger EW, Oswald BJ, McNiven MA (1998) Dynamin-mediated internalization of caveolae. J Cell Biol 141: 85–99

    Google Scholar 

  • Ishikawa H (1968) Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J Cell Biol 38: 51–66

    Google Scholar 

  • Kameya S, Miyagoe Y, Nonaka I, Ikemoto T, Endo M, Hanaoka K, Nabeshima Y, Takeda S (1999) Alphal-syntrophin gene disruption results in the absence of neuronal-type nitric-oxide synthase at the sarcolemma but does not induce muscle degeneration. J Biol Chem 274: 2193–2200

    Google Scholar 

  • Keller P, Simons K (1998) Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140: 1357–1367

    Google Scholar 

  • Lafont F, Lecat S, Verkade R, Simons K (1998) Annexin XIIIb associates with lipid microdomains to function in apical delivery. J Cell Biol 142: 1413–1427

    Google Scholar 

  • Lau YH, Caswell AH, Brunschwig JP (1977) Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle. J Biol Chem 252: 5565–5574

    Google Scholar 

  • — —, Baerwald R, Garcia M (1979) Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle. J Biol Chem 254: 540–546

    Google Scholar 

  • Lilling G, Beitner R (1991) Altered allosteric properties of cytoskeleton-bound phosphofructokinase in muscle from mice with X chromosome-linked muscular dystrophy (mdx). Biochem Med Metab Biol 45: 319–325

    Google Scholar 

  • Lipardi C, Mora R, Colomer V, Paladino S, Nitsch L, Rodriguez-Boulan E, Zurzolo C (1998) Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins in epithelial cells. J Cell Biol 140: 617–626

    Google Scholar 

  • Luetterforst R, Stang E, Zorzi N, Carozzi A, Way M, Parton RG (1999) Molecular characterization of caveolin association with the Golgi complex; identification of a cis Golgi targeting domain in the caveolin molecule. J Cell Biol 145: 1443–1459

    Google Scholar 

  • McLean B, Mazen LL, Shotton DM (1986) Quantitative freeze-fracture studies of membrane changes in chicken muscular dystrophy. Muscle Nerve 9: 501–514

    Google Scholar 

  • McNally EM, de Sa Moreira E, Duggan DJ, Bonnemann CG, Lisanti MP, Lidov HGW, Vainzof M, Passos-Bueno MR, Hoffman EP, Zatz M, Kunkel LM (1998) Caveolin-3 in muscular dystrophy. Hum Mol Genet 7: 871–877

    Google Scholar 

  • Miike T, Nonaka I, Ohtani Y, Tamari H, Ishitsu T (1984) Behaviour of sarcotubular system formation in experimentally induced regeneration of muscle fibers. J Neurol Sci 65: 193–200

    Google Scholar 

  • Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, Volonte D, Galbiati F, Cordone G, Bricarelli FD, Lisanti MP, Zara F (1998) Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18: 365–368

    Google Scholar 

  • Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K (1995) VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 92: 10339–10343

    Google Scholar 

  • Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141: 101–114

    Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273: 5419–5422

    Google Scholar 

  • Parton RG (1996) Caveolae and caveolins. Curr Opin Cell Biol 8: 542–548

    Google Scholar 

  • —, Simons K (1995) Digging into caveolae. Science 269: 1398–1399

    Google Scholar 

  • —, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127: 1199–1215

    Google Scholar 

  • —, Way M, Zorzi N, Stang E (1997) Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 136: 137–115

    Google Scholar 

  • Ralston E, Ploug T (1999) Caveolin-3 is associated with the T-tubules of mature skeletal muscle fibers. Exp Cell Res 246: 510–515

    Google Scholar 

  • Rosemblatt M, Hidalgo C, Vergara C, Ikemoto N (1981) Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem 256: 8140–8148

    Google Scholar 

  • Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG (1999) Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1: 98–105

    Google Scholar 

  • Scherer PE, Lisanti MP (1997) Association of phosphofructokinase-M with caveolin-3 in differentiated skeletal myotubes: dynamic regulation by extracellular glucose and intracellular metabolites. J Biol Chem 272: 20698–20705

    Google Scholar 

  • Schlegel A, Volonte D, Engelman JA, Galbiati F, Mehta P, Zhang XL, Scherer PE, Lisanti MP (1998) Crowded little caves: structure and function of caveolae. Cell Signal 10: 457–463

    Google Scholar 

  • Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127: 1217–1232

    Google Scholar 

  • Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 91: 12130–12134

    Google Scholar 

  • Simionescu M, Simionescu N (1991) Endothelial transport of macromolecules: transcytosis and endocytosis. Cell Biol Rev 25: 1–80

    Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387: 569–672

    Google Scholar 

  • Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP (1996) Expression of caveolin-3 in skeletal, cardiac and smooth muscle cells. J Biol Chem 271: 15160–15165

    Google Scholar 

  • Stang E, Kartenbeck J, Parton RG (1997) Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol Biol Cell 8: 47–57

    Google Scholar 

  • Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271: 2255–2261

    Google Scholar 

  • Van Deurs B, Holm PK, Sandvig K, Hansen SH (1993) Are caveolae involved in endocytosis? Trends Cell Biol 3: 249–251

    Google Scholar 

  • Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394: 798–801

    Google Scholar 

  • Venema VJ, Ju H, Zou R, Venema RC (1997) Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle: identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272: 28187–28190

    Google Scholar 

  • Way M, Parton RG (1995) M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett 376: 108–112

    Google Scholar 

  • Yuan SH, Arnold W, Jorgensen AO (1991) Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ. J Cell Biol 112: 289–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parton, R.G., Carozzi, A. & Gustavsson, J. Caves and labyrinths: caveolae and transverse tubules in skeletal muscle. Protoplasma 212, 15–23 (2000). https://doi.org/10.1007/BF01279343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279343

Keywords

Navigation