, Volume 208, Issue 1–4, pp 206–210 | Cite as

Enigma of apogamety

  • R. Czapik


Apogamety, the occurrence of which has been either denied or criticized by some authors, presents several problems that should be carefully considered in argumentation. Gynogenesis, which comprises zygotic, parthenogenetic, and apogametic embryos, an actively developing branch of tissue culture, is of no help here being itself subject to similar criticism. The discussion on apogamety awaits methodological progress which would yield answers to the following questions: are all cells of embryo sac potentially gametic; in what way are the mechanisms of cell differentiation and specialization of cells within embryo sac correlated with their totipotency; what are the limitations of plant cell totipotency in embryo sacs. The above problems of apogamety are not only an enigma for embryology and reproduction of angiosperms but they belong also to the crucial problems of the general biology which might be solved by studies of corresponding molecular mechanisms and experiments in tissue culture.


Apomixis Synergidal apogamety Antipodal apogamety Endospermal apogamety, Gynogenesis Parthenogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battaglia E (1963) Apomixis. In: Maheshwari P (ed) Recent advances in embryology of the angiosperms. Catholic Press, Ranchi, India, pp 221–264Google Scholar
  2. Bohanec B (1994) Induction of gynogenesis in agricultural crops: a review. In: Proceedings of IPBA, Rogla, December 5–7, 1994, pp 43–55Google Scholar
  3. Bossoutrot D, Hasemans D (1985) Gynogenesis inBeta vulgaris: from in vitro culture of unpollinated ovules to the production of doubled haploid plants in soil. Plant Cell Rep 4: 300–303Google Scholar
  4. Chaubal R, Reger BJ (1992) Calcium in the synergid cells and other regions of pearl millet ovaries. Sex Plant Reprod 3: 34–46Google Scholar
  5. Czapik R (1997) Theoretical aspects of apogamety in angiosperms. Bull Pol Acad Sci 45: 2–4Google Scholar
  6. Cooper DC (1943) Haploid-diploid twin embryos in Lilium and Nicotiana. Am J Bot 30: 408–413Google Scholar
  7. Favre-Duchartre M (1977) Eight interpretations of embryo sac. Phytomorphology 27: 407–418Google Scholar
  8. Gerassimova-Navashina EN (1958) Gametophyte, basic developmental features and function of reproductive elements in angiosperms. Probl Bot 3: 125–167 (in Russian)Google Scholar
  9. Gu S-R, Gui Y-L, Xu T-Y (1985) Induction of endospermal plantlets in Lycium. Acta Bot Sin 27: 106–108Google Scholar
  10. Gustafsson A (1946) Apomixis in higher plants I: the mechanism of apomixis. Lunds Univ Arsskr Avd 242: 1–66Google Scholar
  11. Huang Q-F, Yang H-Y, Zhou C (1982) Embryological observations on ovary culture of unpollinated young flowers inHordeum vulgare L. Acta Bot Sin 24: 296–300Google Scholar
  12. Johanson A (1950) Plant embryology. Chronica Botanica, Waldham, MassGoogle Scholar
  13. Johri BM, Ambegaokar KB (1984) Embryology: then and now. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo, pp 1–52Google Scholar
  14. —, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vol 1. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  15. Kamelina O (1995) Synergid apogamety in the genusTetradiclis Stev. (Tetradiclidaceae) and occurrence of this phenomenon in flowering plants. Apomixis Newsl 8: 32–33Google Scholar
  16. Li G-M, Yang H-Y (1986) Further embryological studies on the in vitro apogamy inOryza sativa L. Acta Bot Sin 28: 229–234Google Scholar
  17. Liu Y-S, Sun J-S, Wang F-H (1994) Cytoembryological studies on polyembryonic line SB-1 ofOryza sativa: polyembryony and its origin. Acta Bot Sin 36: 821–826Google Scholar
  18. Nakano H, Tashiro T, Maeda E (1975) Plant differentiation in callus tissue induced from immature endosperm ofOryza sativa L. Z Pflanzenphysiol 76: 444–449Google Scholar
  19. Naumova TN, Yakovlev MS (1975) Development of embryonic structures inTrillium camschatcense Ker.-Gawl. after pollination. Bot Zh 60: 627–635 (in Russian)Google Scholar
  20. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo, pp 475–518Google Scholar
  21. Renner O (1916) Zur Terminologie der pflanzlichen Generationswechsel. Biol Zentralbl 36: 337–374Google Scholar
  22. Rutishauser A (1967) Fortpflanzungsmodus und Meiose apomiktischer Blütenpflanzen. Springer, Wien New YorkGoogle Scholar
  23. Schürhoff PN (1922) Zur Polyembryonie vonAllium odorum. Ber Dtsch Bot Ges 11: 374–381Google Scholar
  24. Solntseva PM (1969) Principles of embryological classification of apomixis in angiosperms. Rev Cytol Biol Veg 32: 371–377Google Scholar
  25. Solntseva PM (1995) Letters. Apomixis Newsl 8: 55–57Google Scholar
  26. Srivastava PS (1973) Formation of triploid plantlets in endosperm cultures ofPutrajwa rox burghi. Z Pflanzenphysiol 69: 270–273Google Scholar
  27. Tian H-Q, Yang H-Y (1983) Synergid apogamy and egg cell anomalous division in cultured ovaries ofOryza sativa L. Acta Bot Sin 25: 403–408Google Scholar
  28. Yakovlev MS (1974) Gametogenesis, embryo sac and pollen grain (contribution to the problem of the origin of Angiospermae). Bot Zh 59: 1712–1727 (in Russian)Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • R. Czapik
    • 1
  1. 1.Department of Plant Cytology and EmbryologyJagellonian UniversityCracowPoland

Personalised recommendations