Skip to main content
Log in

Effect of osmotic stress on tolerance of air-drying and cryopreservation ofArabidopsis thaliana suspension cells

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Arabidopsis thaliana suspension cells were preserved in liquid nitrogen for over three years, using embedding of cells in calcium-alginate prior to subculture in sucrose-enriched medium, air-drying, and direct quenching in liquid nitrogen. Survival of cells reached 34%, yielding regrowth at the surface of all cryopreserved beads in less than 7 days. Following pretreatment and dehydration, the water content dropped from 2300% to 34% with respect to dry weight. Differential scanning calorimetry showed that glass transition occurred on cooling, followed by a slight crystallization event on rewarming. The survival of cells was independent of the cooling rate. The tolerance of the acute dehydration step increased progressively with sucrose pretreatment duration, indicating the requirement for adaptative cellular alterations. Ultrastructural studies revealed several changes in cells after sucrose pretreatment prolonged from 1 to 7 days: reversal of the initially plasmolyzed state, microvacuolation, numerous autophagic structures, scarcity of ribosomes, increase in number and size of starch grains. No cell division seemed to occur during this period. After air-drying and after a freeze-thaw cycle, followed by 24 h rehydration, regenerating cells had recovered a high level of ultrastructural organization and contained numerous polysomes suggesting an intense metabolic activity. Trehalose, a cryoprotective disaccharide not considered to be a metabolic substrate, yielded only 70% regrowth after freezing. Biochemical analysis showed that soluble sugars accumulated during the pretreatment, essentially sucrose or trehalose; the monosaccharide content also increased. In the light of these results, the action of sucrose in inducing freezing tolerance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

high-performance liquid chromatography

LN:

liquid nitrogen

TTC:

2,3,5-triphenyltetrazolium chloride

References

  • Arora R, Wisniewski ME (1995) Ultrastructural and protein changes in cell suspension cultures of peach associated with low temperature-induced cold acclimation and abscisic acid treatment. Plant Cell Tissue Organ Cult 40: 17–24

    Google Scholar 

  • Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for transient gene expression inArabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol Biochem 30: 123–128

    Google Scholar 

  • Bachiri Y, Gazeau C, Hansz J, Morisset C, Dereuddre J (1995) Successful cryopreservation of suspension cells by encapsulation-dehydration. Plant Cell Tissue Organ Cult 43: 241–248

    Google Scholar 

  • Bassaglia C (1988) Comportement de bourgeons d'oeillets (Dianthus caryophyllus L., var. Eolo) cultivs in vitro, soumis à une congélation dans l'azote liquide (−196 °C): aspects physiologiques et cytologiques. Diplôme d'etudes approfondies, Universitè Paris VI, Paris, France

    Google Scholar 

  • Bhandal IS, Hauptmann RM, Widholm JM (1985) Trehalose as cryoprotectant for the freeze-preservation of carrot and tobacco cells. Plant Physiol 78: 430–432

    Google Scholar 

  • Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual composition in leaves of the resurrection plantMyrothamnus flabellifolia. Physiol Plant 87: 223–226

    Google Scholar 

  • Black M, Corbineau F, Grzesik M, Guy P, Côme D (1996) Carbohydrate metabolism in the developing and maturing wheat embryo in relation to its desiccation tolerance. J Exp Bot 47: 161–169

    Google Scholar 

  • Brodelius P (1985) The potential role of immobilization in plant cell biotechnology. Trends Biotechnol 11: 280–285

    Google Scholar 

  • Bruni F, Leopold AC (1991) Glass transitions in soybean seed. Plant Physiol 96: 660–663

    Google Scholar 

  • Chen THH, Kartha KK, Leung NL, Kurz WGW, Chatson KB, Constabel F (1984) Cryopreservation of alkaloid-producing cell cultures of periwinkle (Catharanthus roseus). Plant Physiol 75: 726–731

    Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242: 1–10

    PubMed  Google Scholar 

  • — — —, Rudolph AS, Wistrom CA, Spargo BJ, Anchordoguy TJ (1988) Interactions of sugars with membranes. Biochim. Biophys Acta 947: 367–384

    PubMed  Google Scholar 

  • Dereuddre J, Bassaglia C, Bertrand-Desbrunais A, Blandin S, Engelmann F, Fahre J, Galerne M, Gazeau C, Morisset C, Yilmaz D (1988) Application des très basses températures à la conservation des cultures de cellules et d'organes végétaux. Rev Gen Froid 1988: 400–411

    Google Scholar 

  • —, Scottez C, Arnaud Y, Duron M (1990a) Effets d'un endurcissement au froid des vitroplants de Poirier (Pyrus communis L. cv Beurré Hardy) sur la résistance des apex axillaires à une congélation dans l'azote liquide. C R Acad Sci Paris 310: 265–272

    Google Scholar 

  • — (1990b) Résistance d'apex caulinaires de vitroplants de Poirier (Pyrus communis L. cv Beurré Hardy), enrobés dans l'alginate, à une déshydratation puis à une congélation dans l'azote liquide: effet d'un endurcissement préalable au froid. C R Acad Sci Paris 310: 317–323

    Google Scholar 

  • —, Blandin S, Hassen N (1991a) Resistance of alginate-coated somatic embryos of Carrot (Daucus carota L.) to freezing in liquid nitrogen 1: effects of preculture. Cryo-Letters 12: 125–134

    Google Scholar 

  • —, Hassen N, Blandin S, Kaminski M (1991b) Resistance of alginatecoated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen 2: thermal analysis. Cryo-Letters 12: 135–148

    Google Scholar 

  • —, Tannoury M, Hassen N, Kaminski M, Vintejoux C (1992) Application de la technique d'enrobage à la conglation d'embryons somatiques de carotte (Daucus carota L.) dans l'azote liquide: étude cytologique. Bull Soc Bot Fr 139: 15–33

    Google Scholar 

  • Draget KI, Myhre S, Skjåk-Bræk G, Østgaard K (1988) Regeneration, cultivation and differentiation of plant protoplasts immobilized in Ca-alginate beads. J Plant Physiol 132: 552–556

    Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Duval Y, Dereuddre J (1993) Importance of sucrose for the acquisition of tolerance to desiccation and cryopreservation of oil palm somatic embryos. Cryo-Letters 14: 243–250

    Google Scholar 

  • Fabre J (1991) Cryoconservation d'apex de Solanacées tubérifères après encapsulation-déshydratation: étude des modifications cellulaires au cours du prétraitement. Thése de doctorat, University Paris VI, Paris, France

    Google Scholar 

  • —, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation ofSolanum shoot tips. Cryo-Letters 11: 413–426

    Google Scholar 

  • Fahy GM, Farlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobology 21: 407–426

    Google Scholar 

  • Farrant JM, Pammenter NW, Berjak P (1993) Seed development in relation to desiccation tolerance: a comparison between desiccation-sensitive (recalcitrant) seeds ofAvicennia marina and desiccation-tolerant types. Seed Sci Res 3: 1–13

    Google Scholar 

  • Franks F (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press, Cambridge

    Google Scholar 

  • Fujikawa S, Miura K (1986) Plasma membrane ultrastructural changes caused by mechanical stress in the formation of extracellular ice as a primary cause of slow freezing injury in fruitbodies of basiomycetes (Lyophyllum ulmarium (Fr.) Kühner). Cryobiology 23: 371–382

    Google Scholar 

  • Gazeau C, Hansz J, Jondet M, Dereuddre J (1992) Cryomicroscopic comparison of freezing (to -40 °C) and thawing effects onCatharanthus cells and their protoplasts. Cryo-Letters 13: 137–148

    Google Scholar 

  • —, Elleuch H, David A, Morisset C (1998) Cryopreservation of transformedPapaver somniferum cells. Cryo-Letters 19: 147–159

    Google Scholar 

  • Gnanapragasam S, Vasil IK (1992) Ultrastructural changes in suspension culture cells ofPanicum maximum during cryopreservation. Plant Cell Rep 11: 169–174

    Google Scholar 

  • Gonzáles-Árnao MT, Engelmann F, Urra C, Morenza M, Rios A (1998) Cryopreservation ofCitrus apices using the encapsulation-dehydration technique. Cryo-Letters 19: 177–182

    Google Scholar 

  • Guy CL, Huber JLA, Huber SC (1992) Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 100: 502–508

    Google Scholar 

  • Hitmi A, Coudret A, Barthomeuf C, Sallanon H (1999) The role of sucrose in freezing tolerance inChrysanthemum cinerariaefolium L. cell cultures. Cryo-Letters 20: 45–54

    Google Scholar 

  • Hulst AC, Tramper J, Brodelius P, Eijkenboom LJC, Luyben KC (1985) Immobilised plant cells: respiration and oxygen transfer. J Chem Tech Biotechnol 35B: 198

    Google Scholar 

  • Koster KL, Leopold AC (1988) Sugars and desiccation tolerance in seeds. Plant Physiol 88: 829–832

    Google Scholar 

  • Leopold AC, Sun WQ, Bernal-Lugo I (1994) The glassy state in seeds: analysis and function. Seed Sci Res 4: 267–274

    Google Scholar 

  • Linsefors L, Brodelius P (1985) Immobilization of plant protoplasts: viability studies. Plant Cell Rep 4: 23–27

    Google Scholar 

  • Mari S, Engelmann F, Chabrillange N, Huet C, Michaux-Ferrière N (1995) Histo-cytological study of apices of coffee (Coffea racemosa andC. sessiliflora) in vitro plantlets during their cryopreservation using the encapsulation-dehydration technique. Cryo-Letters 16: 289–298

    Google Scholar 

  • Martínez D, Arroyo-García R, Angeles Revilla M (1999) Cryopreservation of in vitro grown shoot tips ofOlea europaea L. var. Arbequina. Cryo-Letters 20: 29–36

    Google Scholar 

  • Miquel M, Browse J (1998)Arabidopsis lipids: a fat chance. Plant Physiol Biochem 36: 187–197

    Google Scholar 

  • Müller J, Sprenger N, Bortlik K, Boller T, Weiemken A (1997) Desiccation increases sucrose levels inRamonda andHaberlea, two genera of resurrection plants in the Gesneriaceae. Physiol Plant 100: 153–158

    Google Scholar 

  • Ooms JJJ, Wilmer JA, Karssen CM (1994) Carbohydrates are not the sole factor determining desiccation tolerance in seeds ofArabidopsis thaliana. Physiol Plant 90: 431–436

    Google Scholar 

  • Plessis P, Leddet C, Collas A, Dereuddre J (1993) Cryopreservation ofVitis vinifera L. cv Chardonnay shoot tips by encapsulation-dehydration: effects of pretreatment, cooling and postculture conditions. Cryo-Letters 14: 309–320

    Google Scholar 

  • Poissonnier M, Monod V, Paques M, Dereuddre J (1991) Cryoconservation dans l'azote liquide d'apex d'Eucalyptus gunnii (Hook, f.) cultivés in vitro aprés enrobage et déshydratation. Ann AFOCEL 1992: 5–23

    Google Scholar 

  • Pritchard HW, Grout BWW, Short KC (1986) Osmotic stress as a pregrowth procedure for cryopreservation 1: growth and ultrastructure of sycamore and soybean cell suspensions. Ann Bot 57: 41–48

    Google Scholar 

  • Sakai A, Yoshida S (1968) The role of sugar and related compounds in variations of freezing resistance. Cryobiology 5: 160–174

    PubMed  Google Scholar 

  • Scottez C, Chevreau E, Godard N, Arnaud Y, Duron M, Dereuddre J (1992) Cryopreservation of cold-hardened shoot tips of pear (Pyrus communis L. cv Beurré Hardy) in vitro cultures after encapsulation-dehydration. Cryobiology 29: 691–700

    Google Scholar 

  • Singh NK, Bracker A, Hasegana PM, Handa AK, Backel S, Hermodson MA, Pfankoch E, Rgnier FE, Bressan RA (1987) Characterization of osmotin: a thumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85: 529–536

    Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35: 543–584

    Google Scholar 

  • —, Lanphear FO (1967) Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol 42: 1423–1426

    Google Scholar 

  • Suzuki T, Kaneko M, Harada T (1997) Increase in freezing resistance of excised shoot tips ofAsparagus officinalis L. by preculture on sugar-rich media. Cryobiology 34: 264–275

    Google Scholar 

  • Tanaka H, Matsumura M, Veliky IA (1984) Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol Bioeng 26: 53–58

    Google Scholar 

  • Tannoury M, Vintejoux C (1997) Etudes cytologiques de bourgeons d'oeillet (Dianthus caryophyllus L.) après congélation. Acta Bot Gall 144: 107–118

    Google Scholar 

  • Thierry C, Tessereau H, Florin B, Meschine M-C, Petiard V (1997) Role of sucrose for the acquisition of tolerance to cryopreservation of carrot somatic embryos. Cryo-Letters 18: 283–292

    Google Scholar 

  • Thomashow MF (1993) Genes induced during cold acclimation in higher plants. In: Steponkus PL (ed) Advances in lowtemperature biology, vol 2. Jai Press, London, pp 183–210

    Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation ofArabidopsis thaliana. Plant Physiol 109: 15–30

    PubMed  Google Scholar 

  • Vandenbussche B, De Proft MP (1996) Cryopreservation of in vitro sugar beet shoot tips using the encapsulation-dehydration technique: development of a basic protocol. Cryo-Letters 17: 137–140

    Google Scholar 

  • Wang J-H, Ge J-G, Liu F, Huang C-N (1998) Ultrastructural changes during cryopreservation of rice (Oryza sativa L.) embryogenic suspension cells by vitrification. Cryo-Letters 19: 49–54

    Google Scholar 

  • Williams RJ (1985) Thermal analysis of trehalose: H2O. Cryobiology 22: 632–633

    Google Scholar 

  • Withers LA (1978) The freeze-preservation of synchronously dividing cultured plant cells ofAcer pseudoplatanus L. Cryobiology 15: 87–92

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Morisset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachiri, Y., Bajon, C., Sauvanet, A. et al. Effect of osmotic stress on tolerance of air-drying and cryopreservation ofArabidopsis thaliana suspension cells. Protoplasma 214, 227–243 (2000). https://doi.org/10.1007/BF01279067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279067

Keywords

Navigation