Skip to main content
Log in

The structural elements responsible for contraction in the ciliateSpirostomum

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The surface of the contractile ciliateSpirostomum contains continuous spiral ciliated grooves traversing its length. Bundles of microtubules run parallel to the base of the grooves and appear to be part of a cohesive, semi-rigid cortex. Beneath this, a network of microfilament bundles occurs which is attached to the peristomal membranelle apparatus, also part of the cortex. The possible roles played by these structures during contraction of the organism were examined.

During contraction, the entire cortex twists and the spiral arrangement of the grooves and microtubules decreases in pitch and increases in diameter. Simultaneously, the bundles of microfilaments change in distribution and appearance so as to suggest that they are undergoing an active shortening process. Based on these observations, two models for contraction are presented. In one, shortening of the animal arises from a smooth muscle-like contraction of the microfilament network whose attachment to the basal bodies of the membranellar cilia guarantees shortening and widening of the cortex and consequently the whole animal. In the second, a shortening (or sliding) of external microtubules relative to internal ones in the cortical microtubule bundles would result in an increase in diameter, a decrease in pitch, and a decrease in axial length of the bundles, resulting in contraction of the animal. The observations do not allow a choice between these alternatives to be made, and they may not, in fact, be mutually exclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R., 1965: Cytoplasmic streaming and locomotion in marineForaminifera. In: Primitive Motile Systems in Biology (R. Allen andN. Kamiya, eds.), pp. 405–430. New York and London: Academic Press.

    Google Scholar 

  • Bannister, L., andE. Tatchell, 1968: Contractility and fibre systems inStentor coeruleus. J. Cell Sci.3, 295–308.

    Google Scholar 

  • Boggs, N., 1965: Comparative Studies onSpirostomum: silver impregnation of three species. J. Protozool.12, 603–606.

    Google Scholar 

  • Burdwood, W., 1969: Unpublished results.

  • Daniel, W., andC. Mattern, 1965: Some observations on the structure of the peristomal membranelli ofSpirostomum ambiguum. J. Protozool.12, 14–34.

    Google Scholar 

  • Dembitzer, H., andH. Hirshfeld, 1966: Some cytological observations on the heterotrichous ciliate,Blepharisma. J. Cell Biol.30, 201–205.

    Google Scholar 

  • Fauré-Fremiet, E., P. Favard etN. Carasso, 1962: Étude au microscopie électronique des ultrastructures d'Epistylisanastatica (cilie péritriche). J. Microscopie1, 287–312.

    Google Scholar 

  • Finley, H., C. Brown, andW. Daniel, 1964: Electron microscopy of the ectoplasm and infraciliature ofSpirostomum ambiguum. J. Protozool.11, 264–280.

    Google Scholar 

  • Fisher, R. A., 1950: Statistical methods for research workers. 11th ed. Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Grain, J., 1968: Les systems fibrillaires chezStentor igneus Ehrenberg etSpirostomum ambiguum Ehrenburg. Protistologica4, 27–36.

    Google Scholar 

  • Harris, P., 1962: Some structural and functional aspects of the mitotic apparatus in sea urchin embryos. J. Cell Biol.14, 475–487.

    Google Scholar 

  • Grimstone, A., andL. Cleveland, 1965: The fine structure and function of the contractile axostyles of certain flagellates. J. Cell Biol.24, 387–400.

    Google Scholar 

  • Inoué, S., andH. Sato, 1967: Cell motility by labile association of molecules. J. Gen. Physiol.50, 259–292.

    Google Scholar 

  • Jahn, T., andE. Bovee, 1964: Protoplasmic movements and locomotion in protozoa. In: Biochemistry and Physiology of Protozoa, Vol. 3 (S. Hunter, ed.), pp. 62–129. New York and London: Academic Press.

    Google Scholar 

  • Jones, A., T. Jahn, andJ. Fonseca, 1966: Contraction of protoplasm I. J. Cell Physiol.68, 127–133.

    Google Scholar 

  • Kane, R. A., 1962: The mitotic apparatus fine structure of the isolated unit. J. Cell Biol.15, 279–287.

    Google Scholar 

  • Luft, J., 1961: Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol.9, 409–414.

    Google Scholar 

  • McIntosh, J. R., P. K. Hepler, andD. G. Van Wie, 1969: Model for mitosis. Nature224, 659–663.

    Google Scholar 

  • —, andK. R. Porter, 1967: Microtubules in the spermatids of the domestic fowl. J. Cell Biol.35, 153–173.

    Google Scholar 

  • Nagai, R., andN. Kamiya, 1966: Movement of theMyxomycete plasmodium II. Electron microscope studies on fibrillar structures in the plasmodium. Proc. Japan Acad.42, 934–939.

    Google Scholar 

  • —, andL. Rebhun, 1966: Cytoplasmic microfilaments in streamingNitella cells. J. Ultrastruct. Res.14, 571–589.

    Google Scholar 

  • Pitelka, D., 1969: Fibrillar systems in flagellates and ciliates. In: Research in Protozoology, Vol. 3, in press. Oxford: Pergamon.

    Google Scholar 

  • Randall, J., andS. Jackson, 1958: Fine structure and function inStentor polymorphous. J. Biophys. Biochem. Cytol.4, 807–830.

    Google Scholar 

  • Rebhun, L., 1967: Structural aspects of saltatory particle movement. J. Gen. Physiol.50, 223–239.

    Google Scholar 

  • — andG. Sander, 1967: Ultrastructure and birefringence of the isolated mitotic apparatus. J. Cell Biol.34, 859–883.

    Google Scholar 

  • Reynolds, E., 1963: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol.17, 208–212.

    Google Scholar 

  • Satir, P., 1967: Morphological aspects of ciliary motion. J. Gen. Physiol.50, 241–258.

    Google Scholar 

  • Stempak, J., andR. Ward, 1964: An improved staining method for electron microscopy. J. Cell Biol.22, 697–701.

    Google Scholar 

  • Tilney, L., 1968: Factors governing the organization of microtubules in the axonemal pattern inActinosphaerium nucleofilum. J. Cell Biol.39, 136 a.

    Google Scholar 

  • — andK. Porter, 1967: Studies on the microtubules inHeliozoa II. J. Cell Biol.34, 327–343.

    Google Scholar 

  • Wohlfarth-Bottermann, K., 1964: Differentiations of the ground cytoplasm and their significance for the generation of the motive force for ameboid movement. In: Primitive Motile Systems in Biology (R. Allen andN. Kamiya, eds.), pp. 79–107. New York and London: Academic Press.

    Google Scholar 

  • Wohlman, A., andR. Allen, 1968: Structural organization associated with pseudopod extension and contraction during cell locomotion inDifflugia. J. Cell Sci.3, 105–114.

    Google Scholar 

  • Yagiu, R., andY. Shigenaka, 1963: Electron microscopy of the longitudinal fibrillar bundle and the contractile fibrillar system inSpirostomum ambiguum. J. Protozool.10, 364–369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehman, W.J., Rebhun, L.I. The structural elements responsible for contraction in the ciliateSpirostomum . Protoplasma 72, 153–178 (1971). https://doi.org/10.1007/BF01279048

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279048

Keywords

Navigation