The computational complexity of recognizing permutation functions

Abstract

Let\(\mathbb{F}_q \) be a finite field withq elements and\(f \in \mathbb{F}_q \left( x \right)\) a rational function over\(\mathbb{F}_q \). No polynomial-time deterministic algorithm is known for the problem of deciding whetherf induces a permutation on\(\mathbb{F}_q \). The problem has been shown to be in co-R \( \subseteq \)co-NP, and in this paper we prove that it is inR \( \subseteq \) NP and hence inZPP, and it is deterministic polynomial-time reducible to the problem of factoring univariate polynomials over\(\mathbb{F}_q \). Besides the problem of recognizing prime numbers, it seems to be the only natural decision problem inZPP unknown to be inP. A deterministic test and a simple probabilistic test for permutation functions are also presented.

This is a preview of subscription content, access via your institution.

References

  1. Leonard M. Adleman and Ming-Deh Huang,Primality Testing and Abelian Varieties Over Finite Fields, vol. 1512 ofLecture Notes in Mathematics. Springer-Verlag, 1992.

  2. A. V. Aho, J. E. Hopcroft, andJ. D. Ullman,The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading MA, 1974.

    Google Scholar 

  3. E. Bach, Weil bounds for singular curves.AAECC, to appear.

  4. S. Barnett,Polynomials and Linear Control Systems, vol. 77 ofMonographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York NY, 1983.

    Google Scholar 

  5. E. Bombieri, On exponential sums in finite fields.Amer. J. Math. 88 (1966), 71–105.

    Google Scholar 

  6. E. Bombieri andH. Davenport, On two problems of Mordell.Amer. J. Math. 88 (1966), 61–70.

    Google Scholar 

  7. D. G. Cantor andE. Kaltofen, On fast multiplication of polynomials over arbitrary algebras.Acta. Inform. 28 (1991), 693–701.

    Google Scholar 

  8. A. L. Chistov and D. Yu. Grigoryev, Polynomial-time factoring of the multivariable polynomials over a global field. LOMI preprint E-5-82, Leningrad, USSR, 1982.

  9. S. D. Cohen, The distribution of polynomials over finite fields.Acta Arith. 17 (1970), 255–271.

    Google Scholar 

  10. H. Davenport andD. J. Lewis, Notes on congruences (I).Quart. J. Math. Oxford 14 (1963), 51–60.

    Google Scholar 

  11. S. A. Evdokimov, Efficient factorization of polynomials over finite fields and the generalized Riemann hypothesis. Technical Report, Universität Bonn, 1993.

  12. M. D. Fried and M. Jarden,Field Arithmetic. Springer-Verlag, 1986.

  13. J. von zur Gathen, Tests for permutation polynomials.SIAM J. Comput. 20 (1991a), 591–602.

    Google Scholar 

  14. J. von zur Gathen, Values of polynomials over finite fields.Bull. Austral. Math. Soc. 43 (1991b), 141–146.

    Google Scholar 

  15. J. von zur Gathen andE. Kaltofen, Factorization of multivariate polynomials over finite fields.Math. Comp. 45 (1985), 251–261.

    Google Scholar 

  16. J. von zur Gathen, M. Karpinski, and I. E. Shparlinski, Counting curves and their projections. InProc. 25th ACM Symp. Theory of Computing, 1993, 805–812.

  17. S. Goldwasser andJ. Kilian, Almost all primes can be quickly certified. InProc. 18th Ann. ACM Symp. Theory of Computing, Berkeley, CA, 1986, 316–329. See also: J. Kilian,Uses of randomness in algorithms and protocols, ACM Distinguished Doctoral Dissertation Series, MIT Press, Cambridge MA, 1990.

    Google Scholar 

  18. D. R. Hayes, A geometric approach to permutation polynomials over a finite field.Duke Math. J. 34 (1967), 293–305.

    Google Scholar 

  19. E. Kaltofen, Fast parallel absolute irreducibility testing.J. Symb. Computation 1 (1985), 57–67.

    Google Scholar 

  20. E. Kaltofen, Deterministic irreducibility testing of polynomials over large finite fields.J. Symb. Comp. 4 (1987), 77–82.

    Google Scholar 

  21. A. K. Lenstra, Factoring multivariate polynomials over finite fields.J. Comput. System Sci. 30 (1985), 235–248.

    Google Scholar 

  22. R. Lidl andG.L. Mullen, When does a polynomial over a finite field permute the elements of the field?Amer. Math. Monthly 95 (1988), 243–246.

    Google Scholar 

  23. R. Lidl andG.L. Mullen, When does a polynomial over a finite field permute the elements of the field?, II.Amer. Math. Monthly 100 (1993), 71–74.

    Google Scholar 

  24. K. Ma and J. von zur Gathen, Counting value sets of functions and testing permutation functions. InAbstract of Int. Conf. Number Theoretic and Algebraic Methods in Computer Science, Moscow, 1993, 62–65. Finite Fields and Their Applications1 (1995), to appear.

  25. C. R. MacCluer, On a conjecture of Davenport and Lewis concerning exceptional polynomials.Acta Arith.12 (1967), 289–299.

    Google Scholar 

  26. G. L. Miller, Riemann's hypothesis and tests for primality.J. Comput. System Sci. 13 (1976), 300–317.

    Google Scholar 

  27. G. L. Mullen, Permutation polynomials over finite fields. InProc. 1992 Conf. Finite Fields, Coding Theory, and Advances in Communications and Computing, ed.G. L. Mullen and P. J.-S. Shiue, vol. 141 ofLecture Notes in Pure and Applied Mathematics. Marcel Dekker, 1993, 131–151.

  28. V. Pratt, Every prime has a succinct certificate.SIAM J. of Comput. (1975), 214–220.

  29. M. O. Rabin, Probabilistic algorithms for testing primality.J. of Number Theory 12 (1980), 128–138.

    Google Scholar 

  30. A. Schönhage andV. Strassen, Schnelle Multiplikation großer Zahlen.Computing 7 (1971), 281–292.

    Google Scholar 

  31. I. E. Shparlinski,Computational and algorithmic problems in finite fields, vol. 88 ofMathematics and its applications. Kluwer Academic Publishers, 1992a.

  32. I. E. Shparlinski, A deterministic test for permutation polynomials.Comput complexity 2 (1992b), 129–132.

    Google Scholar 

  33. I. E. Shparlinski, On bivariate polynomial factorization over finite fields.Math. Comp. 60 (1993), 787–791.

    Google Scholar 

  34. R. Solovay andV. Strassen, A fast Monte-Carlo test for primality.SIAM J. Comput. 6 (1977), 84–85. Erratum, in7 (1978), 118.

    Google Scholar 

  35. D. Wan, Ap-adic lifting lemma and its applications to permutation polynomials. InProc. 1992 Conf. Finite Fields, Coding Theory, and Advances in Communications and Computing, ed.G. L. Mullen and P. J.-S. Shiue, vol. 141 ofLecture Notes in Pure and Applied Mathematics. Marcel Dekker, 1993, 209–216.

  36. K. S. Williams, On exceptional polynomials.Canad. Math. Bull. 11 (1968), 279–282.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, K., von zur Gathen, J. The computational complexity of recognizing permutation functions. Comput Complexity 5, 76–97 (1995). https://doi.org/10.1007/BF01277957

Download citation

Subject classifications

  • 68Q15
  • 68Q25
  • 11Y16
  • 12Y05